已知函數(shù).
(Ⅰ)當(dāng)時(shí),函數(shù)
取得極大值,求實(shí)數(shù)
的值;
(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間
內(nèi)存在導(dǎo)數(shù),則存在
,使得
. 試用這個(gè)結(jié)論證明:若函數(shù)
(其中
),則對(duì)任意
,都有
;
(Ⅲ)已知正數(shù)滿足
,求證:對(duì)任意的實(shí)數(shù)
,若
時(shí),都
有.
(Ⅰ) ;(2)詳見解析;(3)詳見解析.
解析試題分析:(Ⅰ)利用導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性,根據(jù)函數(shù)在極值
時(shí)有極值求出參數(shù)
的值;(Ⅱ)構(gòu)造新函數(shù)再利用導(dǎo)數(shù)法求解;(Ⅲ)由已知條件得出
,再利用第(Ⅱ)問的結(jié)論對(duì)任意
,都有
求解.
試題解析:(Ⅰ)由題設(shè),函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/a/oa9fh.png" style="vertical-align:middle;" />,且
所以,得
,此時(shí).
當(dāng)時(shí),
,函數(shù)
在區(qū)間
上單調(diào)遞增;
當(dāng)時(shí),
,函數(shù)
在區(qū)間
上單調(diào)遞減.
函數(shù)
在
處取得極大值,故
4分
(Ⅱ)令,
則.
因?yàn)楹瘮?shù)在區(qū)間
上可導(dǎo),則根據(jù)結(jié)論可知:存在
使得 7分
又,
當(dāng)
時(shí),
,從而
單調(diào)遞增,
;
當(dāng)時(shí),
,從而
單調(diào)遞減,
;
故對(duì)任意,都有
. 9分
(Ⅲ),且
,
,
同理, 12分
由(Ⅱ)知對(duì)任意
,都有
,從而
. 14分
考點(diǎn):導(dǎo)數(shù)的基本運(yùn)算;導(dǎo)數(shù)與函數(shù)的單調(diào)性關(guān)系;不等式的基本性質(zhì)與證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知 (
).
(1)當(dāng)時(shí),判斷
在定義域上的單調(diào)性;
(2)若在
上的最小值為
,求
的值;
(3)若在
上恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),它的一個(gè)極值點(diǎn)是
.
(Ⅰ) 求的值及
的值域;
(Ⅱ)設(shè)函數(shù),試求函數(shù)
的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1) 當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),函數(shù)
圖象上的點(diǎn)都在
所表示的平面區(qū)域內(nèi),求實(shí)數(shù)
的取值范圍.
(3) 求證:,(其中
,
是自然對(duì)數(shù)的底).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在上的函數(shù)
(其中
).
(Ⅰ)解關(guān)于的不等式
;
(Ⅱ)若不等式對(duì)任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1) 當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),求函數(shù)
在
上的最小值
和最大值
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com