【題目】已知函數(shù),將函數(shù)
的圖象沿
軸向左平移
個單位長度后,又沿
軸向上平移1個單位,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>
倍,縱坐標不變,得到函數(shù)
的圖象.
(1)求的對稱中心;
(2)若,求
的值域.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某市效外景區(qū)內(nèi)一條筆直的公路經(jīng)過三個景點A、B、C.景區(qū)管委會又開發(fā)了風景優(yōu)美的景點D.經(jīng)測量景點D位于景點A的北偏東30°方向且距A 8 km處,且位于景點B的正北方向,還位于景點C的北偏西75°方向 上,已知AB=5 km,AD>BD.
(1)景區(qū)管委會準備由景點D向景點B修建一條筆直的公路,不考慮其他因素,求出這條公路的長;
(2)求∠ACD的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當a=3時,求A∩B;
(2)若a>0,且A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某“” 型水渠南北向?qū)挒?/span>
,東西向?qū)挒?/span>
,其俯視圖如圖所示.假設水渠內(nèi)的水面始終保持水平位置.
(1) 過點的一條直線與水渠的內(nèi)壁交于
兩點,且與水渠的一邊的夾角為
(
為銳角),將線段
的長度
表示為
的函數(shù);
(2) 若從南面漂來一根長度為的筆直的竹竿(粗細不計),竹竿始終浮于水平面內(nèi),且不發(fā)生形變,問:這根竹竿能否從拐角處一直漂向東西向的水渠(不會卡。吭囌f明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點G(x,y)滿足
(1)求動點G的軌跡C的方程;
(2)過點Q(1,1)作直線L與曲線交于不同的兩點
,且線段
中點恰好為Q.求
的面積;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以為極點,
軸正半軸為極軸建立極坐標系,取相同的長度單位,若曲線
的極坐標方程為
,曲線
的參數(shù)方程為
(
為參數(shù)),設
是曲線
上任一點,
是曲線
上任一點.
(1)求與
交點的極坐標;
(2)已知直線,點
在曲線
上,求點
到
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 某個集團公司下屬的甲、乙兩個企業(yè)在2014年1月的產(chǎn)值都為a萬元,甲企業(yè)每個月的產(chǎn)值與前一個月相比增加的產(chǎn)值相等,乙企業(yè)每個月的產(chǎn)值與前一個月相比增加的百分數(shù)相等,到2015年1月兩個企業(yè)的產(chǎn)值再次相等.
(1)試比較2014年7月甲、乙兩個企業(yè)產(chǎn)值的大小,并說明理由.
(2)甲企業(yè)為了提高產(chǎn)能,決定投入3.2萬元買臺儀器,并且從2015年2月1日起投入使用.從啟用的第一天起連續(xù)使用,第n天的維修保養(yǎng)費為元(n∈N*),求前n天這臺儀器的日平均耗資(含儀器的購置費),并求日平均耗資最小時使用的天數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):由表中數(shù)據(jù),求得線性回歸方程為,若從這些樣本中任取一點,則它在回歸直線左下方的概率為______.
單價 | 4 | 5 | 6 | 7 | 8 | 9 |
銷量 | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com