日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在棱長為2的正方體OABC﹣O′A′B′C′中,E,F(xiàn)分別是棱AB,BC上的動點.
          (1)當AE=BF時,求證A′F⊥C′E;
          (2)若E,F(xiàn)分別為AB,BC的中點,求直線O′B與平面B′EF所成角的正弦值.

          【答案】
          (1)證明:以CC'為z軸,CO為x軸,CB為y軸建立空間直角坐標系,如圖所示,

          設F(0,y,0),∵AE=BF,∴BE=CF,∴E(y,2,0),

          又A′(2,2,2),C′(0,0,2),

          =(﹣2,y﹣2,﹣2), =(y,2,﹣2),

          =﹣2y+2y﹣4+4=0,

          ,∴A′F⊥C′E


          (2)證明:解:E(1,2,0),F(xiàn)(0,1,0),B'(0,2,2),

          , =(0,1,2),

          設平面B'EF的法向量為 ,

          ,取x=2,則z=1,y=﹣2,

          又O′(2,0,2),B(0,2,0), =(﹣2,2,﹣2),

          設O′B與平面B′EF所成的角為θ,

          則sinθ=|cos< >|= = ,

          即直線O′B與平面B′EF所成角的正弦值為


          【解析】(1)以CC'為z軸,CO為x軸,CB為y軸建立空間直角坐標系,利用向量法能證明A′F⊥C′E.(2)求出平面B'EF的法向量和 ,利用向量法能求出直線O′B與平面B′EF所成角的正弦值.
          【考點精析】解答此題的關鍵在于理解空間中直線與直線之間的位置關系的相關知識,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點,以及對空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,已知橢圓 =1(a>b>0)的離心率為 .A為橢圓上異于頂點的一點,點P滿足 = ,

          (1)若點P的坐標為(2, ),求橢圓的方程;
          (2)設過點P的一條直線交橢圓于B,C兩點,且 =m ,直線OA,OB的斜率之積﹣ ,求實數(shù)m的值;
          (3)在(1)的條件下,是否存在定圓M,使得過圓M上任意一點T都能作出該橢圓的兩條切線,且這兩條切線互相垂直?若存在,求出定圓M;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,摩天輪的半徑,它的最低點距地面的高度忽略不計.地上有一長度為的景觀帶,它與摩天輪在同一豎直平面內(nèi),且.從最低點處逆時針方向轉(zhuǎn)動到最高點處,記.

          1)當時,求點距地面的高度;

          2)試確定的值,使得取得最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2 , l1交y軸正半軸于點A,l2交x軸正半軸于點C.

          (1)若A(0,1),求點C的坐標;
          (2)試問是否總存在經(jīng)過O,A,B,C四點的圓?若存在,求出半徑最小的圓的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線l與拋物線y2=2px(p>0)交于A,B兩點,D為坐標原點,且OA⊥OB,OD⊥AB于點D,點D的坐標為(1,2),則p=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
          (1)求f(x)的定義域與最小正周期;
          (2)討論f(x)在區(qū)間[﹣ ]上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】解答題。
          (1)作出不等式x+y﹣3≤0在坐標平面內(nèi)表示的區(qū)域(用陰影部分表示);
          (2)求不等式x2﹣3x+2<0的解集.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=log2 (a為常數(shù))是奇函數(shù).
          (Ⅰ)求a的值;
          (Ⅱ)若當x∈(1,3]時,f(x)>m恒成立.求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】給出下列命題: ①函數(shù)y=sin( ﹣2x)是偶函數(shù);
          ②方程x= 是函數(shù)y=sin(2x+ )的圖象的一條對稱軸方程;
          ③若α、β是第一象限角,且α>β,則sinα>sinβ;
          ④設x1、x2是關于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
          其中正確命題的序號是 . (填出所有正確命題的序號)

          查看答案和解析>>

          同步練習冊答案