日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
          (Ⅰ)求證:平面PAC⊥平面PBC;
          (Ⅱ)若AB=2,AC=1,PA=1,求證:二面角C-PB-A的余弦值.
          (Ⅰ)證明:如圖,
          由AB是圓的直徑,得AC⊥BC.
          由PA⊥平面ABC,BC?平面ABC,得PA⊥BC.
          又PA∩AC=A,PA?平面APC,AC?平面PAC,
          所以BC⊥平面PAC.
          因?yàn)锽C?平面PBC,
          所以平面PAC⊥平面PBC;
          (Ⅱ)過C作CM⊥AB于M,
          因?yàn)镻A⊥平面ABC,CM?平面ABC,所以PA⊥CM,
          故CM⊥平面PAB.
          過M作MN⊥PB于N,鏈接NC.
          由三垂線定理得CN⊥PB.
          所以∠CNM為二面角C-PB-A的平面角.
          在Rt△ABC中,由AB=2,AC=1,得BC=
          3
          CM=
          3
          2
          ,BM=
          3
          2

          在Rt△ABP中,由AB=2,AP=1,得PB=
          5

          因?yàn)镽t△BNMRt△BAP,所以
          MN
          1
          =
          3
          2
          5

          故MN=
          3
          5
          10

          又在Rt△CNM中,CN=
          30
          5
          .故cos∠CNM=
          6
          4

          所以二面角C-PB-A的余弦值為
          6
          4

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,正方形ABCD所在平面與矩形ACEF所在平面垂直,其中AB=
          2
          ,AF=1,M是EF中點(diǎn).
          (1)求證:AM平面BDE;
          (2)求二面角A-BD-F的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          三棱柱ABC-A1B1C1中,∠ABC=90°,BB1⊥底面ABC,D為棱AC的中點(diǎn),E為棱A1C1的中點(diǎn),且AB=BC=BB1=1.
          (1)求證:CE平面BA1D.
          (2)求二面角A1-BD-C的余弦值.
          (3)棱CC1上是否存在一點(diǎn)P,使PD⊥平面A1BD,若存在,試確定P點(diǎn)位置,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α(0°<α<90°),點(diǎn)B1在底面上的射影D落在BC上.
          (1)求證:AC⊥平面BB1C1C;
          (2)當(dāng)α為何值時(shí),AB1⊥BC1,且使點(diǎn)D恰為BC中點(diǎn)?
          (3)(理科做)當(dāng)α=arccos
          1
          3
          ,且AC=BC=AA1時(shí),求二面角C1-AB-C的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在三棱錐S-ABC中,如圖,∠SAB=∠SAC=∠ACB=90°,AC=2,
          BC=
          13
          ,SB=
          29

          (1)證明:SC⊥BC;
          (2)求側(cè)面SBC與底面ABC所成的二面角大小;
          (3)(理)求異面直線SC與AB所成的角的大。ㄓ梅慈呛瘮(shù)表示).
          (文)求三棱錐的體積VS-ABC

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,梯形ABCD中,ADBC,∠ABC=
          π
          2
          ,AB=a,AD=3a,∠ADC=arcsin
          5
          5
          ,PA⊥面ABCD,PA=a.求:
          (1)二面角P-CD-A的大小(用反三角函數(shù)表示);
          (2)點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,在三棱錐P-ABC中,D、E分別是BC、AB的中點(diǎn),PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC與DE所成的角為α,PD與平面ABC所成的角為β,二面角P-BC-A的平面角為γ,則α,β,γ的大小關(guān)系是( 。
          A.α<β<γB.α<γ<βC.β<α<γD.γ<β<α

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,直棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=
          2
          2
          AB.
          (Ⅰ)證明:BC1平面A1CD
          (Ⅱ)求二面角D-A1C-E的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          設(shè)α、β、γ為彼此不重合的三個(gè)平面,l為直線,給出下列命題:
          ①若α∥β,α⊥γ,則β⊥γ;
          ②若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ;
          ③若直線l與平面α內(nèi)的無數(shù)條直線垂直,則直線l與平面α垂直;
          ④若α內(nèi)存在不共線的三點(diǎn)到β的距離相等,則平面α平行于平面β;
          上面命題中,真命題的序號為________(寫出所有真命題的序號).

          查看答案和解析>>

          同步練習(xí)冊答案