日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知AB是圓O的直徑,C、D是圓O上的兩個點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
          (Ⅰ)求證:C是劣弧的中點(diǎn);
          (Ⅱ)求證:BF=FG.

          【答案】解:(I)∵CF=FG
          ∴∠CGF=∠FCG
          ∴AB圓O的直徑

          ∵CE⊥AB


          ∴∠CBA=∠ACE
          ∵∠CGF=∠DGA

          ∴∠CAB=∠DAC
          ∴C為劣弧BD的中點(diǎn)
          (II)∵
          ∴∠GBC=∠FCB
          ∴CF=FB
          同理可證:CF=GF
          ∴BF=FG
          【解析】(I)要證明C是劣弧BD的中點(diǎn),即證明弧BC與弧CD相等,即證明∠CAB=∠DAC,根據(jù)已知中CF=FG,AB是圓O的直徑,CE⊥AB于E,我們易根據(jù)同角的余角相等,得到結(jié)論.
          (II)由已知及(I)的結(jié)論,我們易證明△BFC及△GFC均為等腰三角形,即CF=BF,CF=GF,進(jìn)而得到結(jié)論。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為

          (I)請完成列聯(lián)表

          優(yōu)秀

          非優(yōu)秀

          合計

          甲班

          10

          乙班

          30

          合計

          110

          (Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為成績與班級有關(guān)系?

          參考公式和臨界值表

          ,其中

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校高三年級800名學(xué)生在一次百米測試中,成績?nèi)吭?2秒到17秒之間,抽取其中50個樣本,將測試結(jié)果按如下方式分成五組:第一組[12,13),第二組[13,14),…,第五組[16,17],如圖是根據(jù)上述分組得到的頻率分布直方圖.
          (1)若成績小于13秒被認(rèn)為優(yōu)秀,求該樣本在這次百米測試中成績優(yōu)秀的人數(shù);
          (2)請估計本年級800名學(xué)生中,成績屬于第三組的人數(shù);

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分14分)已知過原點(diǎn)的動直線與圓 相交于不同的兩點(diǎn),

          1)求圓的圓心坐標(biāo);

          2)求線段的中點(diǎn)的軌跡的方程;

          3)是否存在實(shí)數(shù),使得直線 與曲線只有一個交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .若gx)存在2個零點(diǎn),則a的取值范圍是

          A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,的四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為

          (1)求橢圓的方程;

          (2)設(shè)分別為橢圓的左、右頂點(diǎn),是直線上不同于點(diǎn)的任意一點(diǎn)若直線,分別與橢圓相交于異于的點(diǎn)、,試探究點(diǎn)是否在以為直徑的圓內(nèi)?證明你的結(jié)論

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知值域?yàn)閇﹣1,+∞)的二次函數(shù)滿足f(﹣1+x)=f(﹣1﹣x),且方程f(x)=0的兩個實(shí)根x1 , x2滿足|x1﹣x2|=2.
          (1)求f(x)的表達(dá)式;
          (2)函數(shù)g(x)=f(x)﹣kx在區(qū)間[﹣1,2]內(nèi)的最大值為f(2),最小值為f(﹣1),求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2﹣(a2+1)x+alnx.
          (Ⅰ)若函數(shù)f(x)在[ , e]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
          (Ⅱ)當(dāng)a時,求f(x)在[1,2]上的最大值和最小值.(注意:ln2<0.7)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知兩點(diǎn),直線AM,BM相交于點(diǎn)M,且這兩條直線的斜率之積為.

          (1)求點(diǎn)M的軌跡方程;

          (2)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,過點(diǎn)P的斜率不為零且互為相反數(shù)的兩條直線分別交曲線CQ,R(異于點(diǎn)P),求直線QR的斜率.

          查看答案和解析>>

          同步練習(xí)冊答案