日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)是定義在上的奇函數(shù),當(dāng)時, (其中e是自然界對數(shù)的底,)
          (1)求的解析式;
          (2)設(shè),求證:當(dāng)時,且恒成立;
          (3)是否存在實數(shù)a,使得當(dāng)時,的最小值是3 ?如果存在,求出實數(shù)a的值;如果不存在,請說明理由。

          (1);(2)證明過程詳見解析;(3)存在實數(shù),使得當(dāng)時,有最小值3.

          解析試題分析:本題主要考查對稱區(qū)間上函數(shù)解析式、利用導(dǎo)數(shù)求函數(shù)最值、恒成立問題等基礎(chǔ)知識,考查學(xué)生的分類討論思想、數(shù)形結(jié)合思想,考查學(xué)生的轉(zhuǎn)化能力、計算能力.第一問,把所求范圍轉(zhuǎn)化為已知范圍代入到已知解析式,再利用奇偶性整理解析式;第二問,先將代入到中,構(gòu)造新函數(shù),所求證的表達(dá)式轉(zhuǎn)化為,對求導(dǎo)判斷函數(shù)單調(diào)性,求出函數(shù)最值,代入到轉(zhuǎn)化的式子中驗證對錯即可;第三問,先假設(shè)存在最小值3,對求導(dǎo),分情況討論a,通過是否在區(qū)間內(nèi)討論a的4種情況,分別判斷函數(shù)的單調(diào)性,且數(shù)形結(jié)合求出函數(shù)最值,令其等于3,解出a的值.
          (1)設(shè),則,所以又因為是定義在上的奇函數(shù),所以 
          故函數(shù)的解析式為         2分
          (2)證明:當(dāng)時,
          ,設(shè)
          因為,所以當(dāng)時,,此時單調(diào)遞減;當(dāng)時,,此時單調(diào)遞增,所以
          又因為,所以當(dāng)時,,此時單調(diào)遞減,所以
          所以當(dāng)時,           6分
          (3)解:假設(shè)存在實數(shù),使得當(dāng)時,有最小值是3,

          (ⅰ)當(dāng),時,在區(qū)間上單調(diào)遞增,
          ,不滿足最小值是3
          (ⅱ)當(dāng),時,在區(qū)間上單調(diào)遞增,
          ,也不滿足最小值是3
          (ⅲ)當(dāng),由于,則,故函數(shù) 是上的增函數(shù).所以,解得(舍去)
          (ⅳ)當(dāng)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線滿足下列條件:
          ①過原點;②在處導(dǎo)數(shù)為-1;③在處切線方程為.
          (1) 求實數(shù)的值;
          (2)求函數(shù)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)f(x)=ex-ax-2.
          (1)求f(x)的單調(diào)區(qū)間;
          (2)若a=1,k為整數(shù),且當(dāng)x>0時,(x-k)f′(x)+x+1>0,求k的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若,求曲線在點處的切線方程;
          (2)求函數(shù)的單調(diào)區(qū)間;
          (3)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),其中
          (1) 當(dāng)時,求曲線在點處的切線方程;
          (2) 求函數(shù)的單調(diào)區(qū)間及在上的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)f(x)=2x3-3(a-1)x2+1,其中a≥1.求函數(shù)f(x)的單調(diào)區(qū)間和極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知曲線
          (1)試求曲線在點處的切線方程;
          (2)試求與直線平行的曲線C的切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某水產(chǎn)養(yǎng)殖場擬造一個無蓋的長方體水產(chǎn)養(yǎng)殖網(wǎng)箱,為了避免混養(yǎng),箱中要安裝一些篩網(wǎng),其平面圖如下,如果網(wǎng)箱四周網(wǎng)衣(圖中實線部分)建造單價為每米56元,篩網(wǎng)(圖中虛線部分)的建造單價為每米48元,網(wǎng)箱底面面積為160平方米,建造單價為每平方米50元,網(wǎng)衣及篩網(wǎng)的厚度忽略不計.
          (1)把建造網(wǎng)箱的總造價y(元)表示為網(wǎng)箱的長x(米)的函數(shù),并求出最低造價;
          (2)若要求網(wǎng)箱的長不超過15米,寬不超過12米,則當(dāng)網(wǎng)箱的長和寬各為多少米時,可使總造價最低?(結(jié)果精確到0.01米)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若,試確定函數(shù)的單調(diào)區(qū)間;
          (2)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;

          查看答案和解析>>