日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的右焦點的坐標(biāo)為,且長軸長為短軸長的.橢圓的上、下頂點分別為,經(jīng)過點的直線與橢圓相交于兩點(不同于兩點).

          1)求橢圓的方程;

          2)若直線,求點的坐標(biāo);

          3)設(shè)直線相交于點,求證:是定值.

          【答案】12的坐標(biāo)為.3)見解析

          【解析】

          1)根據(jù)題意,可得,,,求出,,即可求得橢圓的方程;

          2)由(1)得出點B的坐標(biāo)為,設(shè)點,根據(jù),得出,與橢圓方程聯(lián)立,即可求出點的坐標(biāo);

          3)設(shè),則直線的方程為,與橢圓方程聯(lián)立,得到關(guān)于的一元二次方程,寫出韋達定理,,分別求出直線和直線的方程,從而求得的關(guān)系式,化簡整理得出,即為定值.

          解:(1)根據(jù)題意,已知橢圓右焦點的坐標(biāo)為,且長軸長為短軸長的倍,

          ,,,

          解得:,,

          所以橢圓的方程為:.

          2)由題意得,點的坐標(biāo)為,設(shè)點,

          由于經(jīng)過點的直線與橢圓相交于兩點,

          已知,則,所以,

          因為,,

          整理得:,

          ,解得:(舍去),

          所以所求點的坐標(biāo)為.

          3)由于經(jīng)過點的直線與橢圓相交于兩點(不同于兩點),

          設(shè)直線的斜率為,可知斜率存在,則直線的方程為

          由題可知,,設(shè),

          由方程組,得,

          所以,,

          由于直線相交于點

          直線的方程為,得,

          直線BM的方程為,得,

          所以

          因為,

          ,

          所以為定值1.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知實數(shù),函數(shù)在區(qū)間上的最大值是2,則______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設(shè)∠FMH

          (1)求屋頂面積S關(guān)于的函數(shù)關(guān)系式;

          (2)已知上部屋頂造價與屋頂面積成正比,比例系數(shù)為k(k為正的常數(shù)),下部主體造價與其 高度成正比,比例系數(shù)為16 k.現(xiàn)欲造一棟上、下總高度為6 m的別墅,試問:當(dāng)為何值時,總造價最低?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】國家統(tǒng)計局進行第四次經(jīng)濟普查,某調(diào)查機構(gòu)從15個發(fā)達地區(qū),10個欠發(fā)達地區(qū),5個貧困地區(qū)中選取6個作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).普查過程中首先要進行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:

          普查對象類別

          順利

          不順利

          合計

          企事業(yè)單位

          40

          10

          50

          個體經(jīng)營戶

          90

          60

          150

          合計

          130

          70

          200

          (1)寫出選擇6個國家綜合試點地區(qū)采用的抽樣方法;

          (2)根據(jù)列聯(lián)表判斷是否有97.5%的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”,分析造成這個結(jié)果的原因并給出合理化建議.

          附:參考公式: ,其中

          參考數(shù)據(jù):

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點,點P為平面上的動點,過點P作直線l的垂線,垂足為Q,且

          求動點P的軌跡C的方程;

          設(shè)點P的軌跡Cx軸交于點M,點A,B是軌跡C上異于點M的不同的兩點,且滿足,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線Cy=,D為直線y=上的動點,過DC的兩條切線,切點分別為A,B.

          1)證明:直線AB過定點:

          2)若以E(0,)為圓心的圓與直線AB相切,且切點為線段AB的中點,求四邊形ADBE的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx=|x-m|-|2x+2m|m0).

          (Ⅰ)當(dāng)m=1時,求不等式fx)≥1的解集;

          (Ⅱ)若xR,tR,使得fx+|t-1||t+1|,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為實數(shù),函數(shù)

          )求函數(shù)的單調(diào)區(qū)間;

          )求函數(shù)上的最小值;

          )若,求使方程有唯一解的的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列結(jié)論中正確的個數(shù)為(

          (1)是直線和直線垂直的充要條件;

          (2)在線性回歸方程中,相關(guān)系數(shù)越大,變量間的相關(guān)性越強;

          (3)已知隨機變量,若,則

          (4)若命題,,則,

          A.1B.2C.3D.4

          查看答案和解析>>

          同步練習(xí)冊答案