日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{a}滿(mǎn)足a=1,a=2a+1(n∈N)

          (Ⅰ)求數(shù)列{a}的通項(xiàng)公式;

          (Ⅱ)若數(shù)列{bn}滿(mǎn)足4k­1-14k2-1…4k-1=(an+1)km(n∈N*),證明:{bn}是等差數(shù)列;

          (Ⅲ)證明:(n∈N*).

          解析:(I)∵an+1=2 an+1(n∈N),

          ∴an+1+1=2(an+1),

          ∴| an+1| 是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列。

          ∴an+1=2n

          既an=2n-1(n∈N)。

          (II)證法一:∵4b1-14 b2-2…4 bn-1=(a+1)bn,

          ∵4k1+k2+…+kn   =2nk,
          ∴2[(b1+b2+…+bn)-n]=nb,                            ①
          2[(b1+b2+…+bn+1)-(n+1)]=(n+1)bn+1                    ②

          ②-①,得2(bn+1-1)=(n+1)bn+1-nb,
          即 (n-1)bn+1-nbn+2=0.                               ③
          nbn+2=(n+1)bn+1+2=0.                                ④
          ④-③,得nbn+2-2nbn+1-nbn=0,

          即 bn+2-2bn+1+b=0,

          ∴bn-2-bn+1=bn(n∈N*),
          ∴{bn}是等差數(shù)列.
          證法二:同證法一,得
          (n-1)bn+1=nbn+2=0
          令n=1,得b1=2.
          設(shè)b2=2+d(d∈R),,下面用數(shù)學(xué)歸納法證明 bn=2+(n-1)d.
          (1)當(dāng)n=1,得b1=2.
          (2)假設(shè)當(dāng)n=k(k≥2)時(shí),b1=2+(k-1)d,那么
          bk+1=

          這就是說(shuō),當(dāng)n=k+1時(shí),等式也成立.
          根據(jù)(1)和(2),可知bn=2(n-1)d對(duì)任何n∈N*都成立.
          ∵bn+1-bn=d, ∴{bn}是等差數(shù)列.
          (3)證明:∵

          (),k=1,2,…,n,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}、{bn}滿(mǎn)足:a1=
          1
          4
          ,an+bn=1,bn+1=
          bn
          1-an2

          (1)求b1,b2,b3的值;
          (2)求證:數(shù)列{
          1
          bn-1
          }
          是等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
          (3)設(shè)Sn=a1a2+a2a3+…+anan+1,若4aSn<bn恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海交大附中高三數(shù)學(xué)理總復(fù)習(xí)二等差數(shù)列、等比數(shù)列練習(xí)卷(解析版) 題型:選擇題

          已知數(shù)列{an},{bn}滿(mǎn)足a1=b1=3,an1-an=3,n∈N*,若數(shù)列{cn}滿(mǎn)足cn=ban,則c2 013=(  )

          A.92 012    B.272 012

          C.92 013    D.272 013

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省沈陽(yáng)市四校協(xié)作體高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷 (解析版) 題型:填空題

          已知數(shù)列{a}滿(mǎn)足a=n+,若對(duì)所有nN不等式a≥a恒成立,則實(shí)數(shù)c的取值范圍是_____________;

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{a}滿(mǎn)足a=1,a=2a+1(n∈N)

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)若數(shù)列滿(mǎn)足41-14k2-1…4k-1=(an+1)km(n∈N*),證明: 是等差數(shù)列;

          (Ⅲ)證明:(n∈N*).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案