日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知兩個分類變量XY,由他們的觀測數(shù)據(jù)計算得到K2的觀測值范圍是3.841<k<6.635,據(jù)K2的臨界值表,則以下判斷正確的是(

          P(K2k)

          0.50

          0.40

          0.25

          0.15

          0.10

          0.05

          0.025

          0.01

          0.005

          0.001

          k

          0.455

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          A.在犯錯誤概率不超過0.05的前提下,認(rèn)為變量XY有關(guān)系

          B.在犯錯誤概率不超過0.05的前提下,認(rèn)為變量XY沒有關(guān)系

          C.在犯錯誤概率不超過0.01的前提下,認(rèn)為變量XY有關(guān)系

          D.在犯錯誤概率不超過0.01的前提下,認(rèn)為變量XY沒有關(guān)系

          【答案】A

          【解析】

          K2的臨界值表和K2的觀測值可得結(jié)論

          解:因為K2的觀測值范圍是3.841<k<6.635,

          所以由K2的臨界值表可知在犯錯誤概率不超過0.05的前提下,認(rèn)為變量XY有關(guān)系,或在犯錯誤概率超過0.01的前提下,認(rèn)為變量XY有關(guān)系

          故選:A

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),a是非零常數(shù).

          1)若a1,求不等式fx)≤5的解集;

          2)若a0,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標(biāo)準(zhǔn),BMI=體重(kg/身高(m)的平方.根據(jù)中國肥胖問題工作組標(biāo)準(zhǔn),當(dāng)BMI28時為肥胖.某地區(qū)隨機(jī)調(diào)查了120035歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:

          1)求被調(diào)查者中肥胖人群的BMI平均值;

          2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為35歲以上成人患高血壓與肥胖有關(guān).

          0.050

          0.010

          0.001

          k

          3.841

          6.635

          10.828

          肥胖

          不肥胖

          合計

          高血壓

          非高血壓

          合計

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為為參數(shù)),以O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線,的極坐標(biāo)方程分別為,,交曲線E于點A,B交曲線E于點C,D.

          1)求曲線E的普通方程及極坐標(biāo)方程;

          2)求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份新冠肺炎疫情得到了控制.甲、乙兩個地區(qū)采取防護(hù)措施后,統(tǒng)計了從27日到213日一周的新增新冠肺炎確診人數(shù),繪制成如下折線圖:

          1)根據(jù)圖中甲、乙兩個地區(qū)折線圖的信息,寫出你認(rèn)為最重要的兩個統(tǒng)計結(jié)論;

          2)治療新冠肺炎藥品的研發(fā)成了當(dāng)務(wù)之急,某藥企計劃對甲地區(qū)的項目或乙地區(qū)的項目投入研發(fā)資金,經(jīng)過評估,對于項目,每投資十萬元,一年后利潤是l.38萬元、1.18萬元、l.14萬元的概率分別為、、;對于項目,利潤與產(chǎn)品價格的調(diào)整有關(guān),已知項目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨立的調(diào)整,每次價格調(diào)整中,產(chǎn)品價格下調(diào)的概率都是,記項目一年內(nèi)產(chǎn)品價格的下調(diào)次數(shù)為,每投資十萬元,0、1、2時,一年后相應(yīng)利潤是1.4萬元、1.25萬元、0.6萬元.記對項目投資十萬元,一年后利潤的隨機(jī)變量為,記對項目投資十萬元,一年后利潤的隨機(jī)變量為

          (i)的概率分布列和數(shù)學(xué)期望,;

          (ii)如果你是投資決策者,將做出怎樣的決策?請寫出決策理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,以原點為圓心,橢圓的長半軸為半徑的圓與直線相切.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)已知點, 為動直線與橢圓的兩個交點,問:在軸上是否存在點,使為定值?若存在,試求出點的坐標(biāo)和定值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等,在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:

          方式一:逐份檢驗,則需要檢驗.

          方式二:混合檢驗,將其中)份血液樣本分別取樣混合在一起檢驗.

          若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.

          1)現(xiàn)有份血液樣本,其中只有份樣本為陽性,若采用逐份檢驗方式,求恰好經(jīng)次檢驗就能把陽性樣本全部檢驗出來的概率.

          2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次為.

          i)若,試求關(guān)于的函數(shù)關(guān)系式;

          ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.

          參考數(shù)據(jù):,,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),,且處取得極值.

          )若關(guān)于的方程在區(qū)間上有解,求的取值范圍;

          )證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)拋物線的焦點為,準(zhǔn)線為為拋物線過焦點的弦,已知以為直徑的圓與相切于點.

          1)求的值及圓的方程;

          2)設(shè)上任意一點,過點的切線,切點為,證明:.

          查看答案和解析>>

          同步練習(xí)冊答案