日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知定義在R上的函數(shù)f(x)=2x
          (1)若f(x)= ,求x的值;
          (2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

          【答案】
          (1)解:由題意:f(x)=2x 定義在R上的函數(shù),

          當x≤0時,f(x)=0,無解

          當x>0時,f(x)=2x ,

          由f(x)= ,即:2x = ,

          化簡:222x﹣32x﹣2=0

          因式分解:(2x﹣2)(22x+2)=0

          解得:解得2x=2或2x=﹣

          ∵2x>0,

          故:x=1


          (2)解:當t∈[1,2]時,

          f(2t)= ,f(t)=

          那么: )≥0

          整理得:m(22t﹣1)≥﹣(24t﹣1)

          ∵22t﹣1>0,∴m≥﹣(22t+1)恒成立即可.

          ∵t∈[1,2],∴﹣(22t+1)∈[﹣17,﹣5].

          要使m≥﹣(22t+1)恒成立,只需m≥﹣5

          故:m的取值范圍是[﹣5,+∞)


          【解析】(1)化簡f(x)去掉絕對值,直接進行帶值計算即可.(2)求出f(2t),f(t)帶入,構(gòu)造指數(shù)函數(shù),利用指數(shù)函數(shù)的圖象及性質(zhì)對t∈[1,2]恒成立求解.
          【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識點,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列各小題中,P是q的充要條件的是(08年山東理改編)
          1)p:m<﹣2或m>6;q:y=x2+mx+m+3有兩個不同的零點.
          2)p: =1,q:y=f(x)是偶函數(shù).
          3)p:cosα=cosβ,q:tanα=tanβ.
          4)p:A∩B=A,q:CUBCUA.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)= (a>0,b>0).
          (1)當a=b=1時,證明:f(x)不是奇函數(shù);
          (2)設(shè)f(x)是奇函數(shù),求a與b的值;
          (3)在(2)的條件下,試證明函數(shù)f(x)的單調(diào)性,并解不等式f(1﹣m)+f(1+m2)<0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)f(x)=x2+a|x|+2,x∈R在區(qū)間[3,+∞)和[﹣2,﹣1]上均為增函數(shù),則實數(shù)a的取值范圍是(
          A.[﹣ ,﹣3]
          B.[﹣6,﹣4]
          C.[﹣3,﹣2 ]
          D.[﹣4,﹣3]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數(shù)x都成立.
          (1)求函數(shù)f(x)的解析式;
          (2)當t∈[﹣1,3]時,求y=f(2t)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線y2=﹣x與直線y=k(x+1)(k≠0)相交于A、B兩點,O是坐標原點.
          (1)當k= 時,求|AB|的長;
          (2)求證無論k為何值都有OA⊥OB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=cos2x+sinx
          (1)求f( )的值;
          (2)求f(x)在[﹣ , ]上的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓 過點,其左、右焦點分別為,離心率 是橢圓右準線上的兩個動點,且

          1)求橢圓的方程;

          2)求的最小值;

          3)以為直徑的圓是否過定點?請證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=loga(1﹣x)+loga(x+3),(0<a<1).
          (1)求函數(shù)f(x)的定義域;
          (2)若函數(shù)f(x)的最小值為﹣2,求a的值.

          查看答案和解析>>

          同步練習(xí)冊答案