日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•南通三模)對于定義在R上的函數(shù)f(x),給出三個(gè)命題:
          ①若f(-2)=f(2),則f(x)為偶函數(shù);
          ②若f(-2)≠f(2),則f(x)不是偶函數(shù);
          ③若f(-2)=f(2),則f(x)一定不是奇函數(shù).
          其中正確命題的序號為
          分析:對于①,利用偶函數(shù)的定義即可判斷;對于②的逆否命題為真,原命題為真;對于③,列舉反例即可.
          解答:解:根據(jù)偶函數(shù)的定義,對于定義域內(nèi)的任意一個(gè)值都滿足:f(-x)=f(x)
          對于①,僅滿足f(-2)=f(2),不表明對于R上的其它值也成立,故①錯(cuò)誤;
          對于②的逆否命題為:若f(x)是偶函數(shù),則f(-2)=f(2)為真命題,故原命題為真;
          對于③,函數(shù)f(x)=0(x∈R)是奇函數(shù),且滿足f(-2)=f(2),故③錯(cuò)誤.
          故答案為:②
          點(diǎn)評:本題以函數(shù)為載體,考查偶函數(shù)的定義,考查命題的真假判斷,關(guān)鍵是正確理解偶函數(shù)的定義.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•南通三模)定義在[1,+∞)上的函數(shù)f(x)滿足:①f(2x)=cf(x)(c為正常數(shù));②當(dāng)2≤x≤4時(shí),f(x)=1-|x-3|.若函數(shù)的所有極大值點(diǎn)均落在同一條直線上,則c=
          1或2
          1或2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•南通三模)底面邊長為2m,高為1m的正三棱錐的全面積為
          3
          3
          3
          3
          m2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•南通三模)已知(a+i)2=2i,其中i是虛數(shù)單位,那么實(shí)數(shù) a=
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•南通三模)如圖,在三棱柱ABC-A1B1C1中.
          (1)若BB1=BC,B1C⊥A1B,證明:平面AB1C⊥平面A1BC1;
          (2)設(shè)D是BC的中點(diǎn),E是A1C1上的一點(diǎn),且A1B∥平面B1DE,求
          A1EEC1
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•南通三模)在平面直角坐標(biāo)系xOy中,已知橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的離心率為
          2
          2
          ,其焦點(diǎn)在圓x2+y2=1上.
          (1)求橢圓的方程;
          (2)設(shè)A,B,M是橢圓上的三點(diǎn)(異于橢圓頂點(diǎn)),且存在銳角θ,使
          OM
          =cosθ
          OA
          +sinθ
          OB

          (i)求證:直線OA與OB的斜率之積為定值;
          (ii)求OA2+OB2

          查看答案和解析>>

          同步練習(xí)冊答案