【題目】團(tuán)體購買公園門票,票價(jià)如下表:
購票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價(jià)格 | 13元/人 | 11元/人 | 9元/人 |
現(xiàn)某單位要組織其市場(chǎng)部和生產(chǎn)部的員工游覽該公園,若按部門作為團(tuán)體,選擇兩個(gè)不同的時(shí)間分別購票游覽公園,則共需支付門票費(fèi)為1290元;若兩個(gè)部門合在一起作為一個(gè)團(tuán)體,同一時(shí)間購票游覽公園,則需支付門票費(fèi)為990元,那么這兩個(gè)部門的人數(shù)之差為( )
A. B.
C.
D.
【答案】B
【解析】
根據(jù)整除性確定員工人數(shù)可能情況,對(duì)應(yīng)列方程,解方程組得結(jié)果.
設(shè)市場(chǎng)部和生產(chǎn)部的員工人數(shù)分別為x,y,不妨設(shè)y>x,
因?yàn)?/span>990不能被13整除,所以,兩個(gè)部門人數(shù)之和:x+y≥51,
若51≤x+y≤100,則11(x+y)=990,得:x+y=90 (1)
因?yàn)?/span>1290不能被13整除,所以x,y不在同一區(qū)間[1,50],
從而1≤x≤50,51≤y≤100,
所以13x+11y=1290 。2)
解(1)(2)得:x=150,y=-60,不符合題意,
若x+y≥100,則9(x+y)=990,得:x+y=110。3)
因?yàn)?/span>1290不能被11整除,所以1≤x≤50,51≤y
由13x+11y=1290 。4) 或13x+9y=1290 。5)
解(3)(4)得:x=40人,y=70人,
解(3)(5)得: y=35人,(舍)
所以,兩部門人數(shù)之差為:y-x=30人,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門口,如果近的話當(dāng)天買當(dāng)天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計(jì)了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時(shí)間
(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與
的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)
并加以說明(計(jì)算結(jié)果精確到0.01).(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式
,參考數(shù)據(jù)
.
(2)建立關(guān)于
的回歸方程,并預(yù)測(cè)第六年該公司的網(wǎng)購人數(shù)(計(jì)算結(jié)果精確到整數(shù)).
(參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形中,點(diǎn)
,
分別為邊
,
的中點(diǎn),將
沿
所在直線進(jìn)行翻折,將
沿
所在直線進(jìn)行翻折,在翻折的過程中,
①點(diǎn)與點(diǎn)
在某一位置可能重合;②點(diǎn)
與點(diǎn)
的最大距離為
;
③直線與直線
可能垂直; ④直線
與直線
可能垂直.
以上說法正確的個(gè)數(shù)為( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與
軸交于點(diǎn)
,直線
與拋物線
交于點(diǎn)
,
兩點(diǎn).直線
,
分別交橢圓
于點(diǎn)
、
(
,
與
不重合)
(1)求證:;
(2)若,求直線
的斜率
的值;
(3)若為坐標(biāo)原點(diǎn),直線
交橢圓
于
,
,若
,且
,則
是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線C是平面內(nèi)與兩個(gè)定點(diǎn),
的距離之積等于常數(shù)
的點(diǎn)的軌跡,給出下列三個(gè)結(jié)論:
①曲線過坐標(biāo)原點(diǎn);②曲線關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;
③曲線關(guān)于橫軸對(duì)稱;④曲線關(guān)于縱軸對(duì)稱;
⑤曲線關(guān)于對(duì)稱;⑥若點(diǎn)P在曲線上,則
的面積不大于
.
其中,所有正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
.
(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)
的極值;
(Ⅱ)若函數(shù)在區(qū)間
上有兩個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)是由
個(gè)實(shí)數(shù)組成的
行
列的數(shù)表,其中
表示位于第
行第
列的實(shí)數(shù),且
.
定義
為第s行與第t行的積. 若對(duì)于任意
(
),都有
,則稱數(shù)表
為完美數(shù)表.
(Ⅰ)當(dāng)時(shí),試寫出一個(gè)符合條件的完美數(shù)表;
(Ⅱ)證明:不存在10行10列的完美數(shù)表;
(Ⅲ)設(shè)為
行
列的完美數(shù)表,且對(duì)于任意的
和
,都有
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是圓
上的任意一點(diǎn),
是過點(diǎn)
且與
軸垂直的直線,
是直線
與
軸的交點(diǎn),點(diǎn)
在直線
上,且滿足
.當(dāng)點(diǎn)
在圓
上運(yùn)動(dòng)時(shí),記點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)已知點(diǎn),過
的直線
交曲線
于
兩點(diǎn),交直線
于點(diǎn)
.判定直線
的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輪船公司年初以200萬元購進(jìn)一艘輪船,以每年40萬元的價(jià)格出租給海運(yùn)公司.輪船公司負(fù)責(zé)輪船的維護(hù),第一年維護(hù)費(fèi)為4萬元,隨著輪船的使用與磨損,以后每年的維護(hù)費(fèi)比上一年多2萬元,同時(shí)該輪船第年末可以以
萬元的價(jià)格出售.
(1)寫出輪船公司到第年末所得總利潤(rùn)
萬元關(guān)于
的函數(shù)解析式,并求
的最大值;
(2)為使輪船公司年平均利潤(rùn)最大,輪船公司應(yīng)在第幾年末出售輪船?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com