日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在正三棱(    )
          A.B.C.D.
          B

          試題分析:根據(jù)題意,由于正三棱柱中,在底面ABC的下方補(bǔ)上一個同樣的三棱柱,使得平移到下面的三棱柱的對角線,這樣可以使得相交,利用解三角形的知識來求解異面直線所成的角,根據(jù)題意,由于設(shè),那么可知得到的三角形是等腰三角形,且腰長為,同時底邊長為,則由余弦定理可知,則可知異面直線所成的角為直角,故選B.
          點評:解決該試題的關(guān)鍵是將直線平移到一個三角形中,結(jié)合中位線定理來得到,屬于基礎(chǔ)題。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知四邊形ABCD為平行四邊形,BC⊥平面ABE,AEBE,BE = BC = 1,AE = M為線段AB的中點,N為線段DE的中點,P為線段AE的中點。

          (1)求證:MNEA;
          (2)求四棱錐MADNP的體積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知m,n是兩條不重合的直線,是三個兩兩不重合的平面,給出下列四個命題:
          ①若m,m,則; ②若,
          ③若m//,n //,m//n 則// ④若m,m//,則
          其中真命題是(   )
          A.①和②B.①和③C.③和④D.①和④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐中,四邊形是菱形,,的中點.

          (1)求證:;  (2)求證:平面平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分12分)
          如圖,四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點。

          (1)求證:CD⊥AE;
          (2)求證:PD⊥面ABE。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點.

          (1)求異面直線BE與AC所成角的余弦值;
          (2)求二面角A-BE-C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          在邊長為2的正方體中,EBC的中點,F的中點

          (1)求證:CF∥平面
          (2)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,已知球的面上有四點平面,,
          ,則球的體積與表面積的比為         

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分l2分)
          如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點,若EG//面ABCD.

          (1)求證:EG面ABF;
          (2)若AF=AB,求二面角B—EF—D的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案