日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC=CF=2a,P為AB的中點(diǎn).
          (1)求證:平面PCF⊥平面PDE;
          (2)求四面體PCEF的體積.
          分析:(1)證明平面PCF內(nèi)的直線PC,垂直平面PDE內(nèi)的兩條相交直線DE,PD,就證明了平面PCF⊥平面PDE;
          (2)說明P到平面PCEF的距離為PQ=2a,求出S△CEF=
          1
          2
          DC•CF
          的面積,然后求四面體PCEF的體積.
          解答:證明:(1)因?yàn)锳BCD為矩形,AB=2BC,P為AB的中點(diǎn),
          所以三角形PBC為等腰直角三角形,∠BPC=45°.
          同理可證∠APD=45°.
          所以∠DPC=90°,即PC⊥PD.
          又DE⊥平面ABCD,PC在平面ABCD內(nèi),所以PC⊥DE.
          因?yàn)镈E∩PD=D,所以PC⊥PDE.
          又因?yàn)镻C在平面PCF內(nèi),所以平面PCF⊥平面PDE;
          解:(2)因?yàn)镃F⊥平面ABCD,DE⊥平面ABCD,
          所以DE∥CF.又DC⊥CF,
          所以S△CEF=
          1
          2
          DC•CF=
          1
          2
          ×4a×2a=4a2

          在平面ABCD內(nèi),過P作PQ⊥CD于Q,則
          PQ∥BC,PQ=BC=2a.
          因?yàn)锽C⊥CD,BC⊥CF,
          所以BC⊥平面CEF,即PQ⊥平面CEF,
          亦即P到平面CEF的距離為PQ=2a
          .VPCEF=VP-CEF=
          1
          3
          PQ•S△CEF=
          1
          3
          •4a2•2a=
          8
          3
          a3

          (注:本題亦可利用VP-CEF=VB-CEF=VE-BCF=VD-BCF=
          1
          6
          DC•BC•CF=
          8
          3
          a3
          求得)
          點(diǎn)評(píng):本題考查平面與平面垂直的判定,棱柱、棱錐、棱臺(tái)的體積,考查邏輯思維能力,推理能力,轉(zhuǎn)化思想,是中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          16、如圖,ABCD為矩形,PA⊥平面ABCD,PA=AD,M,N分別為PC,AB中點(diǎn),求證:MN⊥P C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC=CF=2a,DE=a,P為AB的中點(diǎn).
          (1)求證:平面PCF⊥平面PDE;
          (2)求證:AE∥平面BCF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,ABCD為矩形草坪,AB=a(m),BC=b(m)(b<a),現(xiàn)要在四邊上分別取AE=CF=CG=AH=x(m),將中間部分四邊形EFGH建為花壇,記花壇面積為S(m2).
          (1)將S表示為x的函數(shù);
          (2)當(dāng)x為何值時(shí),面積S最大,最大面積是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年江蘇省淮安五校高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

          (本題滿分14分)

          如圖, ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P為AB的中點(diǎn).

          (1)求證:平面PCF⊥平面PDE;

          (2)求證:AE∥平面BCF.

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案