日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )單調(diào),則ω的最大值為

          【答案】9
          【解析】解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,

          ∴ω(﹣ )+φ=nπ,n∈Z,且ω +φ=n′π+ ,n′∈Z,

          ∴相減可得ω =(n′﹣n)π+ =kπ+ ,k∈Z,即ω=2k+1,即ω為奇數(shù).

          ∵f(x)在( , )單調(diào),(1)若f(x)在( , )單調(diào)遞增,

          則ω +φ≥2kπ﹣ ,且ω +φ≤2kπ+ ,k∈Z,

          即﹣ω ﹣φ≤﹣2kπ+ ①,且ω +φ≤2kπ+ ,k∈Z ②,

          把①②可得 ωπ≤π,∴ω≤12,故有奇數(shù)ω的最大值為11.

          當(dāng)ω=11時(shí),﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=﹣

          此時(shí)f(x)=sin(11x﹣ )在( , )上不單調(diào),不滿足題意.

          當(dāng)ω=9時(shí),﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=

          此時(shí)f(x)=sin(9x+ )在( , )上單調(diào)遞減,不滿足題意;

          故此時(shí)ω?zé)o解.(2)若f(x)在( , )單調(diào)遞減,

          則ω +φ≥2kπ+ ,且ω +φ≤2kπ+ ,k∈Z,

          即﹣ω ﹣φ≤﹣2kπ﹣ ③,且ω +φ≤2kπ+ ,k∈Z ④,

          把③④可得 ωπ≤π,∴ω≤12,故有奇數(shù)ω的最大值為11.

          當(dāng)ω=11時(shí),﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=﹣

          此時(shí)f(x)=sin(11x﹣ )在( , )上不單調(diào),不滿足題意.

          當(dāng)ω=9時(shí),﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ= ,

          此時(shí)f(x)=sin(9x+ )在( , )上單調(diào)遞減,滿足題意;

          故ω的最大值為9.

          所以答案是:9.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓 (a>0,b>0)上的點(diǎn)P到左、右兩焦點(diǎn)F1 , F2的距離之和為2 ,離心率為
          (1)求橢圓的方程;
          (2)是否存在同時(shí)滿足①②兩個(gè)條件的直線l?
          ①過(guò)點(diǎn)M(0, );
          ②存在橢圓上與右焦點(diǎn)F2共線的兩點(diǎn)A、B,且A、B關(guān)于直線l對(duì)稱.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐S﹣ABC中,E為棱SC的中點(diǎn),若AC=2 ,SA=SB=AB=BC=SC=2,則異面直線AC與BE所成的角為(

          A.30°
          B.45°
          C.60°
          D.90°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列四個(gè)命題:
          (1)利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a﹣1>0”發(fā)生的概率為 ;
          (2)“x+y≠0”是“x≠1或y≠﹣1”的充分不必要條件;
          (3)如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β;
          (4)設(shè) 是非零向量,已知命題p:若 ,則 ;命題q:若 ,則 ,則“p∨q”是真命題.
          其中說(shuō)法正確的個(gè)數(shù)是( )
          A.1個(gè)
          B.2個(gè)
          C.3個(gè)
          D.4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)f(x)對(duì)任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
          (1)求函數(shù)f(x)的解析式;
          (2)設(shè)函數(shù)g(x)=f(x)+m,(m∈R). ①若存在實(shí)數(shù)a,b(a<b),使得g(x)在區(qū)間[a,b]上為單調(diào)函數(shù),且g(x)取值范圍也為[a,b],求m的取值范圍;
          ②若函數(shù)g(x)的零點(diǎn)都是函數(shù)h(x)=f(f(x))+m的零點(diǎn),求h(x)的所有零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩艘輪船駛向一個(gè)不能同時(shí)停泊兩艘輪船的碼頭,它們?cè)谝粫円箖?nèi)任何時(shí)刻到達(dá)是等可能的.
          (1)已知甲船上有男女乘客各3名,現(xiàn)從中任選3人出來(lái)做某件事情,求所選出的人中恰有一位女乘客的概率;
          (2)如果甲船的停泊時(shí)間為4小時(shí),乙船的停泊時(shí)間為2小時(shí),求它們中的任何一條船不需要等待碼頭空出的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知E,F(xiàn)分別是棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)是定義在(﹣∞,+∞)上的奇函數(shù),當(dāng)x>0時(shí),f(x)=4x﹣x2 , 若函數(shù)f(x)在區(qū)間[t,4]上的值域?yàn)閇﹣4,4],則實(shí)數(shù)t的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】△ABC中,角A、B、C的對(duì)邊分別為a、b、c.已知(a+c)2﹣b2=3ac
          (1)求角B;
          (2)當(dāng)b=6,sinC=2sinA時(shí),求△ABC的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案