日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生.某共享單車運營公司為進一步擴大市場,公司擬再采購一批單車.現(xiàn)有采購成本分別為元/輛和元/輛的、兩款車型可供選擇,按規(guī)定每輛單車最多使用年,但由于多種原因(如騎行頻率等)會導(dǎo)致車輛報廢年限各不相同.考慮到公司運營的經(jīng)濟效益,該公司決定先對兩款車型的單車各輛進行科學模擬測試,得到兩款單車使用壽命頻數(shù)表見下表.

          經(jīng)測算,平均每輛單車每年可以帶來收入元.不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整年.

          (1)分別估計兩款車型使用壽命不低于年的概率;

          (2)如果你是公司的負責人,以參加科學模擬測試的兩款車型各輛單車產(chǎn)生利潤的平均數(shù)為決策依據(jù),你會選擇采購哪款車型?

          【答案】(1)0.8,0.9(2)應(yīng)該采購款單車

          【解析】分析:(1)根據(jù)題中所給的圖表,從中得到壽命不低于兩年的有80輛,利用公式求得相應(yīng)的概率;

          (2)利用公式求得這100輛車的總利潤,除以100為平均利潤,通過比較大小得到相應(yīng)的結(jié)論.

          詳解:(1)因為款車型中有輛使用壽命不低于年,

          所以估計款車型使用壽命不低于年的概率為:

          所以因為款車型中有輛使用壽命不低于年,

          估計款車型使用壽命不低于年的概率為:.

          (2)每生產(chǎn)款車可產(chǎn)生利潤的平均值為:

          (元).

          每生產(chǎn)款車可產(chǎn)生利潤的平均值為:

          (元).

          ,∴應(yīng)該采購款單車.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在多面體中, 平面,,四邊形是邊長為的菱形.

          (1)證明: ;

          (2)線段上是否存在點,使平面,若存在,求的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

          日期

          4月1日

          4月7日

          4月15日

          4月21日

          4月30日

          溫差x/℃

          10

          11

          13

          12

          8

          發(fā)芽數(shù)y/顆

          23

          25

          30

          26

          16

          (Ⅰ)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
          (Ⅱ)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另3天的數(shù)據(jù),求出y關(guān)于x的線性回歸方程 = x+
          (參考公式: = =

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=
          (1)令N(x)=(1+x)2﹣1+ln(1+x),判斷并證明N(x)在(﹣1,+∞)上的單調(diào)性,并求N(0);
          (2)求f(x)在定義域上的最小值;
          (3)是否存在實數(shù)m,n滿足0≤m<n,使得f(x)在區(qū)間[m,n]上的值域也為[m,n]? (參考公式:[ln(1+x)′]=

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù), ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.

          (1)求曲線的普通方程和曲線的直角坐標方程;

          (2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓C:,直線

          (1)若直線被圓C截得的弦長為 ,求實數(shù)的值;

          (2)當t =1時,由直線上的動點P引圓C的兩條切線,若切點分別為A,B,則直線AB是否恒過一個定點?若存在,求出該定點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在中,,,為線段的垂直平分線,交與點上異于的任意一點.

          的值;

          判斷的值是否為一個常數(shù),并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】表示大于的整數(shù)的十位數(shù),例如,.已知,,都是大于的互不相等的整數(shù),現(xiàn)有如下個命題:

          ①若,則;②,;

          ③若是質(zhì)數(shù),則也是質(zhì)數(shù);④若,,成等差數(shù)列,則,可能成等比數(shù)列.

          其中所有的真命題為( )

          A. B. ③④ C. ①②④ D. ①②③④

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,輸出的S值為( 。

          A.2
          B.
          C.
          D.

          查看答案和解析>>

          同步練習冊答案