【題目】已知直線與拋物線
相交于A,B兩點(diǎn),且與圓
相切.
(1)求直線在x軸上截距
的取值范圍;
(2)設(shè)F是拋物線的焦點(diǎn),,求直線
的方程.
【答案】(1);(2)
或
.
【解析】
(1) 設(shè)直線的方程為
,根據(jù)與圓
相切可得
,再聯(lián)立拋物線的方程,根據(jù)判別式大于0可得
或
,再結(jié)合
求解
的取值范圍即可.
(2) 設(shè),聯(lián)立直線與拋物線的方程,代入韋達(dá)定理化簡(jiǎn)
,結(jié)合(1)中
可得關(guān)于
的方程求解即可.
(1)設(shè)直線的方程為
,
的圓心為
,半徑為1.
由直線與圓相切得:
,化簡(jiǎn)得
,
直線的方程代入拋物線,消去
得:
,
由直線與拋物線相交于A,B兩點(diǎn),得
,
將代入不等式,得
或
,
注意到或
綜上知,c的取值范圍是
(2)設(shè)由
得
將代入上式,
由,得
,
所以,
解得或
(舍去),-
故
所以直線的方程為
或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點(diǎn)為
,左頂點(diǎn)為
,線段
的中點(diǎn)為
,圓
過點(diǎn)
,且與
交于
,
是等腰直角三角形,則圓
的標(biāo)準(zhǔn)方程是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)是茶的故鄉(xiāng),也是茶文化的發(fā)源地.中國(guó)茶的發(fā)現(xiàn)和利用已有四千七百多年的歷史,且長(zhǎng)盛不衰,傳遍全球.為了弘揚(yáng)中國(guó)茶文化,某酒店推出特色茶食品“金萱排骨茶”,為了解每壺“金萱排骨茶”中所放茶葉量克與食客的滿意率
的關(guān)系,通過試驗(yàn)調(diào)查研究,發(fā)現(xiàn)可選擇函數(shù)模型
來擬合
與
的關(guān)系,根據(jù)以下數(shù)據(jù):
茶葉量 | 1 | 2 | 3 | 4 | 5 |
4.34 | 4.36 | 4.44 | 4.45 | 4.51 |
可求得y關(guān)于x的回歸方程為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠在定期檢修設(shè)備時(shí)發(fā)現(xiàn)生產(chǎn)管道中共有5處閥門()發(fā)生有害氣體泄漏.每處閥門在每小時(shí)內(nèi)有害氣體的泄露量大體相等,約為0.01立方米.閥門的修復(fù)工作可在不停產(chǎn)的情況下實(shí)施.由于各閥門所處的位置不同,因此修復(fù)所需的時(shí)間不同,且修復(fù)時(shí)必須遵從一定的順序關(guān)系,具體情況如下表:
泄露閥門 | |||||
修復(fù)時(shí)間 (小時(shí)) | 11 | 8 | 5 | 9 | 6 |
需先修復(fù) 好的閥門 |
在只有一個(gè)閥門修復(fù)設(shè)備的情況下,合理安排修復(fù)順序,泄露的有害氣體總量最小為( )
A.1.14立方米B.1.07立方米C.1.04立方米D.0.39立方米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過定點(diǎn)
,圓
.在圓
上任取一點(diǎn)P,連接
,在
上取點(diǎn)M,使得
是以
為底的等腰三角形.
(1)求點(diǎn)M的軌跡方程;
(2)過點(diǎn)的直線
與點(diǎn)M的軌跡交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將數(shù)字1,2,3,4,5這五個(gè)數(shù)隨機(jī)排成一列組成一個(gè)數(shù)列,則該數(shù)列為先減后增數(shù)列的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,由
經(jīng)過伸縮變換
得到曲線
,以原點(diǎn)為極點(diǎn),
軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的極坐標(biāo)方程以及曲線
的直角坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為
,
與曲線
、曲線
在第一象限交于
、
,且
,點(diǎn)
的極坐標(biāo)為
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某街道居委會(huì)擬在地段的居民樓正南方向的空白地段
上建一個(gè)活動(dòng)中心,其中
米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長(zhǎng)方形
,上部分是以
為直徑的半圓. 為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽光線照射下落在居民樓上的影長(zhǎng)
不超過
米,其中該太陽光線與水平線的夾角
滿足
.
(1)若設(shè)計(jì)米,
米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設(shè)計(jì)與
的長(zhǎng)度,可使得活動(dòng)中心的截面面積最大?(注:計(jì)算中
取3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn)
,且其離心率為
,過坐標(biāo)原點(diǎn)
作兩條互相垂直的射線與橢圓
分別相交于
,
兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com