日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),對x1∈[﹣1,2],x0∈[﹣1,2],使g(x1)=f(x0),則a的取值范圍是( )
          A.
          B.
          C.[3,+∞)
          D.(0,3]

          【答案】A
          【解析】解:設(shè)f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分別為A、B,

          由題意可知:A=[﹣1,3],B=[﹣a+2,2a+2]

          ∴a≤
          又∵a>0,∴0<a≤

          所以答案是:A

          【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E為棱CC1上的動點(diǎn).
          (1)若E為棱CC1的中點(diǎn),求證:A1E⊥平面BDE;
          (2)試確定E點(diǎn)的位置使直線A1C與平面BDE所成角的正弦值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點(diǎn)在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實(shí)數(shù)k的取值范圍;
          (Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π. (Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
          (Ⅱ)將函數(shù)f(x)的圖象向左平移 個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象.若y=g(x)在[0,b](b>0)上至少含有10個(gè)零點(diǎn),求b的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 ,且 為不共線的平面向量.
          (1)若 ,求k的值;
          (2)若 ,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn).求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在空間四邊形ABCD中,E,F(xiàn),G分別是AB,BC,CD的中點(diǎn),

          (1)求證:BD∥平面EFG;
          (2)若AD=CD,AB=CB,求證:AC⊥BD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中, = +
          (Ⅰ)求△ABM與△ABC的面積之比
          (Ⅱ)若N為AB中點(diǎn), 交于點(diǎn)P且 =x +y (x,y∈R),求x+y的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)= , ,則方程 的解的個(gè)數(shù)是( )
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          同步練習(xí)冊答案