日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知圓,直線

          1)若直線被圓截得的弦長為,求實(shí)數(shù)的值;

          (2)當(dāng)時(shí),由直線上的動(dòng)點(diǎn)引圓的兩條切線,若切點(diǎn)分別為,則在直線上是否存在一個(gè)定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.

          【答案】(1);(2) 在直線上存在一個(gè)定點(diǎn),定點(diǎn)坐標(biāo)為.

          【解析】

          試題(1)根據(jù)直線與圓相交,利用弦長公式即可;(2)根據(jù)直線與圓相切的條件,列出方程進(jìn)行求解判斷.

          試題解析:(1)的方程可化為,

          故圓心為,半徑.

          則圓心到直線的距離為.

          又弦長為,則,

          ,解得.

          (2)當(dāng)時(shí),圓的方程為

          則圓心為,半徑,圓與直線相離.

          假設(shè)在直線上存在一個(gè)定點(diǎn)滿足條件,設(shè)動(dòng)點(diǎn),

          由已知得PAAC,PBBC,

          在以為直徑的圓上,

          ①—②得,直線的方程為

          又點(diǎn)在直線上,則,即,代入

          ,

          即直線的方程為

          因?yàn)樯鲜綄?duì)任意都成立,故,得.

          故在直線上存在一個(gè)定點(diǎn),定點(diǎn)坐標(biāo)為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

          (1) 試估計(jì)這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);

          (2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購方案:

          A:所有芒果以元/千克收購;

          B:對(duì)質(zhì)量低于克的芒果以元/個(gè)收購,高于或等于克的以元/個(gè)收購.

          通過計(jì)算確定種植園選擇哪種方案獲利更多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為偶函數(shù).

          (Ⅰ)求的最小值;

          (Ⅱ)若不等式恒成立,求實(shí)數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),圓的標(biāo)準(zhǔn)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

          (1)求直線和圓的極坐標(biāo)方程;

          (2)若射線與的交點(diǎn)為,與圓的交點(diǎn)為,且點(diǎn)恰好為線段的中點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】己知⊙O:x2+y2=6,P為⊙O上動(dòng)點(diǎn),過P作PM⊥x軸于M,N為PM上一點(diǎn),且 . (Ⅰ)求點(diǎn)N的軌跡C的方程;
          (Ⅱ)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點(diǎn),則kAD+kAE是否為定值?若是,求出該值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=(
          A.2n
          B.3n
          C.n2
          D.nn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

          (1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?

          (2)請根據(jù)頻率分布直方圖,估計(jì)這100名志愿者樣本的平均數(shù);

          (3)在(1)的條件下,該市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.(參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn):

          (1)位于虛軸上?

          (2)位于一、三象限?

          (3)位于以原點(diǎn)為圓心,以4為半徑的圓上

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在極坐標(biāo)系中,曲線,曲線 .以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

          (1)求的直角坐標(biāo)方程;

          (2)交于不同四點(diǎn),這四點(diǎn)在上的排列順次為,求的值

          查看答案和解析>>

          同步練習(xí)冊答案