日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
          (1)求∠C
          (2)若△ABC的面積為5 ,b=5,求sinA.

          【答案】
          (1)

          解:∵3cosAcosB+1=3sinAsinB+cos2C,

          ∴3(cosAcosB﹣sinAsinB)+1=cos2C,

          可得:3cos(A+B)+1=cos2C,

          ∴﹣3cosC+1=2cos2C﹣1,

          可得:2cos2C+3cosC﹣2=0,

          可得:(2cosC﹣1)(cosC+2)=0,

          ∴解得:cosC= 或cosC=﹣2(舍去),

          ∵0<C<π,

          ∴∠C=


          (2)

          解:∵SABC= absinC=5 ,b=5,C= ,可得:a=4,

          ∵由余弦定理可得:c2=a2+b2﹣2abcosC=16+25﹣2× =21,可得:c= ,

          ∴由正弦定理可得:sinA= = =


          【解析】(1)移項,利用兩角和的余弦函數(shù)公式,三角形內(nèi)角和定理,二倍角的余弦函數(shù)公式,誘導(dǎo)公式化簡已知可得2cos2C+3cosC﹣2=0,進而解得cosC,結(jié)合范圍0<C<π,即可得解C的值.(2)由已知利用三角形面積公式可求a,由余弦定理可得c的值,進而利用正弦定理即可解得sinA的值.
          【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》是我國古代一部重要的數(shù)學(xué)著作,書中有如下問題:“今有良馬與駑馬發(fā)長安,至齊.齊去長安三千里,良馬初日行一百九十三里,日增一十三里,駑馬初日行九十七里,日減半里.良馬先至齊,復(fù)還迎駑馬,問幾何日相逢.”其大意為:“現(xiàn)在有良馬和駑馬同時從長安出發(fā)到齊去,已知長安和齊的距離是3000里,良馬第一天行193里,之后每天比前一天多行13里,駑馬第一天行97里,之后每天比前一天少行0.5里.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇.”試確定離開長安后的第天,兩馬相逢.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,斜三棱柱ABC﹣A1B1C1的側(cè)面AA1C1C是菱形,側(cè)面ABB1A1⊥側(cè)面AA1C1C,A1B=AB=AA1=2,△AA1C1的面積為 ,且∠AA1C1為銳角.
          (I) 求證:AA1⊥BC1
          (Ⅱ)求銳二面角B﹣AC﹣C1的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中內(nèi)動點P(x,y)到圓F:x2+(y﹣1)2=1的圓心F的距離比它到直線y=﹣2的距離小1.
          (1)求動點P的軌跡方程;
          (2)設(shè)點P的軌跡為曲線E,過點F的直線l的斜率為k,直線l交曲線E于A,B兩點,交圓F于C,D兩點(A,C兩點相鄰).
          ①若 =t ,當(dāng)t∈[1,2]時,求k的取值范圍;
          ②過A,B兩點分別作曲線E的切線l1 , l2 , 兩切線交于點N,求△ACN與△BDN面積之積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知命題 方程 有兩個不相等的負(fù)實根,

          命題 不等式 的解集為

          (1)若為真命題,求 的取值范圍.

          (2)若 為真命題, 為假命題,求 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,),其導(dǎo)函數(shù)為,設(shè),則_____________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中,點Q為對角面A1BCD1內(nèi)一動點,點M、N分別在直線ADAC上自由滑動,直線DQMN所成角的最小值為θ,則下列結(jié)論中正確的是( 。

          A. θ=15°,則點Q的軌跡為橢圓的一部分

          B. θ=30°,則點Q的軌跡為橢圓的一部分

          C. θ=45°,則點Q的軌跡為橢圓的一部分

          D. θ=60°,則點Q的軌跡為橢圓的一部分

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0 , y0)(x0≠0)作斜率為k1 , k2的兩條直線分別交拋物線C于A(x1 , y1)B(x2 , y2)兩點(P,A,B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠﹣1).
          (Ⅰ)求拋物線C的焦點坐標(biāo)和準(zhǔn)線方程;
          (Ⅱ)設(shè)直線AB上一點M,滿足 ,證明線段PM的中點在y軸上;
          (Ⅲ)當(dāng)λ=1時,若點P的坐標(biāo)為(1,﹣1),求∠PAB為鈍角時點A的縱坐標(biāo)y1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數(shù)解所在的區(qū)間是(
          A.(0,
          B.( ,1)
          C.(1,e)
          D.(e,3)

          查看答案和解析>>

          同步練習(xí)冊答案