已知函數(shù),討論
的單調(diào)性.
時(shí),在
內(nèi)單調(diào)遞增;
或
時(shí),函數(shù)的增區(qū)間為
和
,減區(qū)間為
]
解析試題分析:,……………………………………………2分
①當(dāng)即
時(shí)
在
內(nèi)單調(diào)遞增,
②當(dāng)即
或
時(shí)
解得
,
…………………8分
函數(shù)的增區(qū)間為和
…………………10分
減區(qū)間為]……………………………………12分
考點(diǎn):函數(shù)導(dǎo)數(shù)判定單調(diào)性
點(diǎn)評(píng):函數(shù)單調(diào)性與其導(dǎo)數(shù)的關(guān)系:若在某一區(qū)間上,則函數(shù)
是增函數(shù);若
,則函數(shù)
是減函數(shù)。本題要對(duì)
分情況討論,從而確定是否有極值點(diǎn),才能確定單調(diào)區(qū)間
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù),其中
為常數(shù),且函數(shù)
和
的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行,求此時(shí)平行線的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),是否存在實(shí)數(shù)
,使函數(shù)在
上遞減,在
上遞增?若存在,求出所有
值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間
(2)設(shè)函數(shù)=
,求證:當(dāng)
時(shí),有
成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中
為常數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時(shí),設(shè)函數(shù)
的3個(gè)極值點(diǎn)為
,且
.
證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(其中
,
),且函數(shù)
的圖象在 點(diǎn)
處的切線與函數(shù)
的圖象在點(diǎn)
處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿足
,求實(shí)數(shù)m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
,
為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對(duì)任意的
恒成立,求實(shí)數(shù)
的值;
(3)在(2)的條件下,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)在區(qū)間
上的最大、最小值;
(2)求證:在區(qū)間上,函數(shù)
的圖象在函數(shù)
的圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)的零點(diǎn)的集合為{0,1},且
是f(x)的一個(gè)極值點(diǎn)。
(1)求的值;
(2)試討論過點(diǎn)P(m,0)與曲線y=f(x)相切的直線的條數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com