【題目】已知函數(shù)。
(1)若,試判斷
的零點(diǎn)的個(gè)數(shù)。
(2)若恒成立,求
的取值范圍。
【答案】(1)見解析;(2) .
【解析】試題分析:(1)若,對(duì)函數(shù)
求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù),可得函數(shù)
的單調(diào)性,從而可判斷
的零點(diǎn)的個(gè)數(shù);(2)法一:
恒成立等價(jià)于
恒成立,令
,設(shè)
,則
,再令
,利用導(dǎo)數(shù)研究
的單調(diào)性,從而可得到
的單調(diào)性,即可求得
的取值范圍;法二:構(gòu)造令
,得到
,令
,利用導(dǎo)數(shù)研究
的單調(diào)性,即可得
的最小值,從而可得
的取值范圍.
試題解析:(1)若,
,
.
∴當(dāng),
,
單調(diào)遞減;當(dāng)
,
,
單調(diào)遞增.
∴.
∴函數(shù)的零點(diǎn)個(gè)數(shù)為0
(2)若,變形得到:
.
法一:令,得到
.
設(shè),則
.
令,則
,可得
在
上單調(diào)遞增,在
上單調(diào)遞減.
∴,則
.
∴在
上單調(diào)遞減
當(dāng),
,則
.
∴.
法二:令,得到
,
令,則
,
,
∴在
上單調(diào)遞減,在
上單調(diào)遞增.
∴,即
在
上單調(diào)遞增
∴當(dāng)時(shí),
,即
,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面 是邊長(zhǎng)為1的正方形,
平面
,
,
與平面
所成角為60°.
(1)求證: 平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生,某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖:
(1)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率與月份代碼
之間的關(guān)系,求
關(guān)于
的線性回歸方程,并
預(yù)測(cè)公司2017年4月的市場(chǎng)占有率;
(2)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車,現(xiàn)有采購(gòu)成本分別為元/輛和1200元/輛的
、
兩款車型可供選擇,按規(guī)定每輛單車最
多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致單車使用壽命各不相同,考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)這兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命的頻數(shù)表如右表:經(jīng)測(cè)算,平均每輛單車每年可以帶來收入500元,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?
參考公式:回歸直線方程為,其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號(hào)為7,2008年年份代號(hào)為8,依次類推.經(jīng)連續(xù)統(tǒng)計(jì)9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合與
的關(guān)系):
年份代號(hào)( | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
當(dāng)年收入( | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求關(guān)于
的線性回歸方程
;
(Ⅱ)試預(yù)測(cè)2020年該企業(yè)的收入.
(參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體棱長(zhǎng)為
,線段
上有兩個(gè)動(dòng)點(diǎn)
,且
,則下列結(jié)論正確的是( )
A.平面
B.始終在同一個(gè)平面內(nèi)
C.平面
D.三棱錐的體積為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,
,
.
,且
平面
,
,點(diǎn)
為
上任意一點(diǎn).
(1)求證: ;
(2)點(diǎn)在線段
上運(yùn)動(dòng)(包括兩端點(diǎn)),若平面
與平面
所成的銳二面角為60°,試確定點(diǎn)
的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為
,
.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于
,
兩點(diǎn),
與直線
交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若
的面積是
面積的2倍,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取
人參加學(xué)校座談交流,那么從得分在區(qū)間
與
各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出
人參加全市座談交流,設(shè)
表示得分在區(qū)間
中參加全市座談交流的人數(shù),求
的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com