日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知圓

          (1)求圓關(guān)于直線對(duì)稱的圓的標(biāo)準(zhǔn)方程;

          (2)過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為8,求直線的方程;

          (3)當(dāng)取何值時(shí),直線與圓相交的弦長(zhǎng)最短,并求出最短弦長(zhǎng).

          【答案】(1);(2);(3)

          【解析】

          (1)設(shè),根據(jù)圓心關(guān)于直線對(duì)稱,列出方程組,求得的值,即可求解;

          (2)由圓的弦長(zhǎng)公式,求得,根據(jù)斜率分類討論,求得直線的斜率,即可求解;

          (3)由直線,得直線過(guò)定點(diǎn),根據(jù)時(shí),弦長(zhǎng)最短,即可求解.

          (1)由題意,圓的圓心,半徑為,

          設(shè),因?yàn)閳A心關(guān)于直線對(duì)稱,

          所以,解得,則,半徑,

          所以圓標(biāo)準(zhǔn)方程為:

          (2)設(shè)點(diǎn)到直線距離為,圓的弦長(zhǎng)公式,得,解得,

          ①當(dāng)斜率不存在時(shí),直線方程為,滿足題意

          ②當(dāng)斜率存在時(shí),設(shè)直線方程為,則,解得,

          所以直線的方程為

          綜上,直線方程為

          (3)由直線,可化為,可得直線過(guò)定點(diǎn),

          當(dāng)時(shí),弦長(zhǎng)最短,又由,可得

          此時(shí)最短弦長(zhǎng)為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近年來(lái),某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的分類垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1 000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):

          廚余垃圾

          可回收物

          其他垃圾

          廚余垃圾

          400

          100

          100

          可回收物

          30

          240

          30

          其他垃圾

          20

          20

          60

          (1)試估計(jì)廚余垃圾投放正確的概率P

          (2)試估計(jì)生活垃圾投放錯(cuò)誤的概率;

          (3)假設(shè)廚余垃圾在廚余垃圾箱,可回收物箱,其他垃圾箱的投放量分別為a、bc,其中a>0,abc=600. 當(dāng)數(shù)據(jù)a、b、c的方差s2最大時(shí),寫出ab、c的值(結(jié)論不要求證明),并求出此時(shí)s2的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為選派一名學(xué)生參加全市實(shí)踐活動(dòng)技能竟賽,A、B兩位同學(xué)在學(xué)校的學(xué)習(xí)基地現(xiàn)場(chǎng)進(jìn)行加工直徑為20mm的零件測(cè)試,他倆各加工的10個(gè)零件直徑的相關(guān)數(shù)據(jù)如圖所示(單位:mm

          A、B兩位同學(xué)各加工的10個(gè)零件直徑的平均數(shù)與方差列于下表;

          平均數(shù)

          方差

          A

          20

          0.016

          B

          20

          s2B

          根據(jù)測(cè)試得到的有關(guān)數(shù)據(jù),試解答下列問(wèn)題:

          (Ⅰ)計(jì)算s2B,考慮平均數(shù)與方差,說(shuō)明誰(shuí)的成績(jī)好些;

          (Ⅱ)考慮圖中折線走勢(shì)情況,你認(rèn)為派誰(shuí)去參賽較合適?請(qǐng)說(shuō)明你的理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知圓,圓,動(dòng)點(diǎn)在直線上(),過(guò)分別作圓,的切線,切點(diǎn)分別為,,若滿足的點(diǎn)有且只有一個(gè),則實(shí)數(shù)的值為______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a1=1,anan+1=2Sn , 設(shè)bn= ,若存在正整數(shù)p,q(p<q),使得b1 , bp , bq成等差數(shù)列,則p+q=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.

          (Ⅰ)證明:平面ABE⊥平面EBD;
          (Ⅱ)點(diǎn)M在線段EF上,試確定點(diǎn)M的位置,使平面MAB與平面ECD所成的角的余弦值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          直線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 ,直線 與曲線 交于不同的兩點(diǎn) ,.

          (1)求實(shí)數(shù) 的取值范圍;

          (2)已知 ,設(shè)點(diǎn) ,若 , , 成等比數(shù)列,求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4—4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點(diǎn)A,B

          )若α,求線段AB中點(diǎn)M的坐標(biāo);

          )若|PA·PB|=|OP,其中P2),求直線l的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2018年高考成績(jī)揭曉,某高中再創(chuàng)輝煌,考后學(xué)校對(duì)于單科成績(jī)逐個(gè)進(jìn)行分析:現(xiàn)對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)成績(jī)進(jìn)行分析,規(guī)定:大于等于135分為優(yōu)秀,135分以下為非優(yōu)秀,成績(jī)統(tǒng)計(jì)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

          (1)請(qǐng)完成上面的列聯(lián)表;

          (2)請(qǐng)問(wèn):是否有75%的把握認(rèn)為“數(shù)學(xué)成績(jī)與所在的班級(jí)有關(guān)系”?

          (3)用分層抽樣的方法從甲、乙兩個(gè)文科班的數(shù)學(xué)成績(jī)優(yōu)秀的學(xué)生中抽取5名學(xué)生進(jìn)行調(diào)研,然后再?gòu)倪@5名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行談話,求抽到的2名學(xué)生中至少有1名乙班學(xué)生的概率.

          參考公式:(其中

          參考數(shù)據(jù):

          查看答案和解析>>

          同步練習(xí)冊(cè)答案