日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,四棱錐P-ABCD的底面為正方形,側(cè)棱PA⊥平面ABCD,且PA=AD=2,E、F、H分別是線段PA、PD、AB的中點(diǎn).
          (1)求證:PD⊥平面AHF;
          (2)求證:平面PBC∥平面EFH.
          分析:(1)要證PD⊥平面AHF,須證PD垂直面內(nèi)兩條相交直線即可.
          (2)要證平面PBC∥平面EFH,須證平面PBC內(nèi)的兩相交直線都與平面EFH平行即可.
          解答:證明:(1)因?yàn)锳P=AD,且F為PD的中點(diǎn),所以PD⊥AF.
          因?yàn)镻A⊥平面ABCD,且AH?平面ABCD,所以AH⊥PA;
          因?yàn)锳BCD為正方形,所以AH⊥AD;    
          又PA∩AD=A,所以AH⊥平面PAD.
          因?yàn)镻D?平面PAD,所以AH⊥PD.
          又AH∩AF=A,所以PD⊥平面AHF.
          (2)因?yàn)镋、H分別是線段PA、AB的中點(diǎn),所以EH∥PB.
          又PB?平面PBC,EH?平面PBC,所以EH∥平面PBC.
          因?yàn)镋、F分別是線段PA、PD的中點(diǎn),所以EF∥AD,
          因?yàn)锳BCD為正方形,所以AD∥BC,所以EF∥BC,
          又BC?平面PBC,EF?平面PBC,所以EF∥平面PBC.
          因?yàn)镋F∩EH=E,且EF?平面EFH,EH?平面EFH,所以平面PBC∥平面EFH.
          點(diǎn)評(píng):本題考查空間直線與平面之間的位置關(guān)系,平面與平面之間的位置關(guān)系,是中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
          E是PC的中點(diǎn).求證:
          (Ⅰ)CD⊥AE;
          (Ⅱ)PD⊥平面ABE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
          (1)求證:AD⊥PB;
          (2)求三棱錐P-MBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
          2
          ,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
          (1)求證:PD⊥AC;
          (2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
          AE
          AP
          的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
          3
          ,點(diǎn)F是PB中點(diǎn).
          (Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
          (Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
          (Ⅲ)若BE=
          3
          3
          ,求直線PA與平面PDE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
          2
          ,設(shè)PC與AD的夾角為θ.
          (1)求點(diǎn)A到平面PBD的距離;
          (2)求θ的大;當(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案