日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=cos4x﹣2sinxcosx﹣sin4x.
          (1)求f(x)的最小正周期及對(duì)稱中心;
          (2)當(dāng)x∈[0, ]時(shí),求f(x)的單調(diào)遞減區(qū)間.

          【答案】
          (1)解:f(x)=(cos4x﹣sin4x)﹣2sinxcosx=(cos2x﹣sin2x)﹣sin2x

          =cos2x﹣sin2x=cos(2x+ ).

          ∴f(x)的最小正周期T= =π.

          ∴2x+ =kπ+ ,k∈Z,

          ∴x= π+ ,k∈Z,

          ∴對(duì)稱中心( π+ ,0),k∈Z


          (2)解:令2kπ≤2x+ ≤2kπ+π,k∈Z,

          ∴kπ﹣ ≤x≤kπ+ ,k∈Z,

          ∵x∈[0, ],

          ∴f(x)的單調(diào)遞減區(qū)間為[0, ]


          【解析】(1)兩角差的余弦公式化簡(jiǎn),再根據(jù)周期的定義和對(duì)稱中心的定義即可求出,(2)根據(jù)余弦函數(shù)的圖象和性質(zhì)即可求出.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為x,第二次出現(xiàn)的點(diǎn)數(shù)為y.
          (1)求事件“x+y≤3”的概率;
          (2)求事件“|x﹣y|=2”的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,幾何體中,邊長(zhǎng)為正方形,直角梯形,,,,

          (1)異面直線所成角的大小;

          (2)求幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 , 的夾角為120°,且| |=4,| |=2.求:
          (1)( ﹣2 )( + );
          (2)|3 ﹣4 |.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),修建此矩形場(chǎng)地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
          (Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在長(zhǎng)方體A1B1C1D1﹣ABCD中,AD=CD=4,AD1=5,M是線段B1D1的中點(diǎn).
          (1)求證:BM∥平面D1AC;
          (2)求直線DD1與平面D1AC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù), )為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.

          (1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

          (2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某倉(cāng)庫(kù)為了保持庫(kù)內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個(gè)半圓,固定點(diǎn)E為CD的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
          (1)當(dāng)MN和AB之間的距離為1米時(shí),求此時(shí)三角通風(fēng)窗EMN的通風(fēng)面積;
          (2)設(shè)MN與AB之間的距離為x米,試將三角通風(fēng)窗EMN的通風(fēng)面積S(平方米)表示成關(guān)于x的函數(shù)S=f(x);
          (3)當(dāng)MN與AB之間的距離為多少米時(shí),三角通風(fēng)窗EMN的通風(fēng)面積最大?并求出這個(gè)最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A﹣BD﹣C,有如下四個(gè)結(jié)論:
          (1)AC⊥BD;
          (2)△ACD是等邊三角形
          (3)AB與平面BCD所成的角為60°;
          (4)AB與CD所成的角為60°.
          則正確結(jié)論的序號(hào)為

          查看答案和解析>>

          同步練習(xí)冊(cè)答案