日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)數(shù)學(xué)公式,且f(4)=3.
          (1)判斷f(x)的奇偶性并說(shuō)明理由;
          (2)判斷f(x)在區(qū)間(0,+∞)上的單調(diào)性,并證明你的結(jié)論;
          (3)若在區(qū)間[1,3]上,不等式f(x)>2x+2m+1恒成立,試確定實(shí)數(shù)m的取值范圍.

          解:(1)由f(4)=3得:n=1
          ,其定義域?yàn)椋?∞,0)∪(0,+∞)

          ∴函數(shù)f(x)在(-∞,0)∪(0,+∞)上為奇函數(shù).
          (2)函數(shù)f(x)在(0,+∞)上是增函數(shù),
          證明如下:任取x1,x2,且0<x1<x2,
          則x1-x2<0,x1x2>0
          那么=
          即f(x1)<f(x2
          ∴函數(shù)f(x)在(0,+∞)上是增函數(shù).
          (3)由f(x)>2x+2m+1,

          ∴2m+1
          ∴當(dāng)x∈[1,3],的最小值是-5,
          ∴2m+1<-5,得m<-3,
          所以實(shí)數(shù)m的取值范圍是(-∞,-3).
          分析:(1)由f(4)=3可求n=1,從而可得,然后檢驗(yàn)f(-x)與f(x)的關(guān)系即可判斷
          (2)要判斷f(x)在(0,+∞)上的單調(diào)性,先設(shè)0<x1<x2,時(shí),利用作差f(x1)-f(x2)判斷f(x1)與f(x2)的大小即可判斷
          (3)由f(x)>2x+2m+1,可得,只要求min,可求m的范圍
          點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性及函數(shù)的單調(diào)性的應(yīng)用,函數(shù)的恒成立與函數(shù)的最值求解的相互轉(zhuǎn)化的應(yīng)用,屬于函數(shù)知識(shí)的綜合應(yīng)用
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省湛江二中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù),且f(4)=3.
          (1)判斷f(x)的奇偶性并說(shuō)明理由;
          (2)判斷f(x)在區(qū)間(0,+∞)上的單調(diào)性,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年模塊考試數(shù)學(xué)復(fù)習(xí)試卷(必修1+必修2)(解析版) 題型:解答題

          已知函數(shù),且f(4)=3
          (1)求m的值;
          (2)證明f(x)的奇偶性;
          (3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省揭陽(yáng)市普寧市華僑中學(xué)高一(上)第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù),且f(4)=3
          (1)求m的值;
          (2)證明f(x)的奇偶性;
          (3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (1)已知函數(shù)數(shù)學(xué)公式,且f(4)=3.判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明;
          (2)已知函數(shù)y=lg(-x2+4x-3)的定義域?yàn)镸,求函數(shù)f(x)=4x-2x+3+4(x∈M)的值域.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案