日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在三棱柱ABC﹣A1B1C1中,CA=CB,側(cè)面ABB1A1是邊長(zhǎng)為2的正方形,點(diǎn)E,F(xiàn)分別在線段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF.
          (Ⅰ)證明:平面ABB1A1⊥平面ABC;
          (Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.

          【答案】證明:(I)取AB的中點(diǎn)D,連結(jié)CD,DF,DE. ∵AC=BC,D是AB的中點(diǎn),∴CD⊥AB.
          ∵側(cè)面ABB1A1是邊長(zhǎng)為2的正方形,AE= ,A1F=
          ∴A1E= ,EF= = ,DE= = ,
          DF= =
          ∴EF2+DE2=DF2 , ∴DE⊥EF,
          又CE⊥EF,CE∩DE=E,CE平面CDE,DE平面CDE,
          ∴EF⊥平面CDE,又CD平面CDE,
          ∴CD⊥EF,
          又CD⊥AB,AB平面ABB1A1 , EF平面ABB1A1 , AB,EF為相交直線,
          ∴CD⊥平面ABB1A1 , 又CDABC,
          ∴平面ABB1A1⊥平面ABC.
          (II)∵平面ABB1A1⊥平面ABC,
          ∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.
          ∵CA⊥CB,AB=2,∴AC=BC=
          以C為原點(diǎn),以CA,CB,CC1為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示:

          則A( ,0,0),C(0,0,0),C1(0,0,2),E( ,0, ),F(xiàn)( , ,2).
          =(﹣ ,0,2), =( ,0, ), =( , ,2).
          設(shè)平面CEF的法向量為 =(x,y,z),則 ,
          ,令z=4,得 =(﹣ ,﹣9 ,4).
          =10,| |=6 ,| |=
          ∴cos< >= =
          ∴直線AC1與平面CEF所成角的正弦值為
          【解析】(I)取AB的中點(diǎn)D,連結(jié)CD,DF,DE.計(jì)算DE,EF,DF,利用勾股定理的逆定理得出DE⊥EF,由三線合一得CD⊥AB,故而CD⊥平面ABB1A1 , 從而平面ABB1A1⊥平面ABC;(II)以C為原點(diǎn)建立空間直角坐標(biāo)系,求出 和平面CEF的法向量 ,則直線AC1與平面CEF所成角的正弦值等于|cos< >|.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零點(diǎn),則a=( )
          A.﹣
          B.
          C.
          D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】點(diǎn)S、A、B、C在半徑為 的同一球面上,點(diǎn)S到平面ABC的距離為 ,AB=BC=CA= ,則點(diǎn)S與△ABC中心的距離為(
          A.
          B.
          C.1
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cosx的圖象經(jīng)過如下變換得到:先將g(x)的圖象向右平移 個(gè)單位長(zhǎng)度,再將其圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,縱坐標(biāo)不變,則函數(shù)f(x)的圖象的一條對(duì)稱軸方程為(
          A.x=
          B.x=
          C.x=
          D.x=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , an是Sn和1的等差中項(xiàng).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)求數(shù)列{nan}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn)給出下列命題:

          ①存在點(diǎn),使得//平面

          對(duì)于任意的點(diǎn),平面平面;

          存在點(diǎn),使得平面

          ④對(duì)于任意的點(diǎn),四棱錐的體積均不變.

          其中正確命題的序號(hào)是______.(寫出所有正確命題的序號(hào)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,記實(shí)數(shù)m的最大值為M.
          (1)求M的值;
          (2)正數(shù)a,b,c滿足a+2b+c=M,求證: + ≥1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列的前n項(xiàng)和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數(shù)列,即a1=1,a4=8,即q3==8,所以q=2.因而數(shù)列的前n項(xiàng)和為 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方體ABCD—A1B1C1D1,

          則下列四個(gè)命題:

          P在直線BC1上運(yùn)動(dòng)時(shí),三棱錐A—D1PC的體積不變;

          P在直線BC1上運(yùn)動(dòng)時(shí),直線AP與平面ACD1所成角的大小不變;

          P在直線BC1上運(yùn)動(dòng)時(shí),二面角P—AD1—C的大小不變;

          M是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),則M點(diǎn)的軌跡是過D1點(diǎn)的直線D1A1。

          其中真命題的編號(hào)是 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案