日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),當(dāng),時,的值域為,,當(dāng),時,的值域為,依此類推,一般地,當(dāng),時,的值域為,,其中、為常數(shù),且

          1)若,求數(shù)列,的通項公式;

          2)若,問是否存在常數(shù),使得數(shù)列滿足?若存在,求的值;若不存在,請說明理由;

          3)若,設(shè)數(shù)列,的前項和分別為,求

          【答案】1an=n1m,bn=1+n1m;(2)存在, k=;(3

          【解析】

          (1)由遞增,可得值域,進(jìn)而得到,,由等差數(shù)列的通項公式,即可得到所求;

          (2)由單調(diào)性求得的值域,,則,再由,運用等比數(shù)列的定義和通項公式,即可得到結(jié)論;

          (3)運用函數(shù)的單調(diào)性,可得的值域,由作差,運用等比數(shù)列的定義和通項公式,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求.

          解:(1)因為,當(dāng)時,為遞增函數(shù),

          所以其值域為,,

          于是,

          ,,則;

          (2)因為,,當(dāng),時,單調(diào)遞增,

          所以的值域為,,

          ,則;

          法一:假設(shè)存在常數(shù),使得數(shù)列,得,則符合.

          法二:假設(shè)存在常數(shù),使得數(shù)列滿足,當(dāng)不符合.

          當(dāng)時,,

          ,

          當(dāng)時,,解得符合,

          (3)因為,當(dāng),時,為遞減函數(shù),

          所以的值域為,

          于是,,

          ,

          因此是以為公比的等比數(shù)列,

          則有,

          進(jìn)而有

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=lnx+ax2+ax

          1)若曲線yfx)在點P1,f1))處的切線與直線y4x+1平行,求實數(shù)a的值;

          2)若時,關(guān)于x的方程在(0,2]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時,證明:上恒成立;

          2)若函數(shù)有唯一零點,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列{2n1}的前n13,7,2n1組成集合nN*),從集合An中任取kk=12,3,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn,例如當(dāng)n=1時,A1={1},T1=1,S1=1;當(dāng)n=2時,A2={13},T1=1+3,T2=1×3,S2=1+3+1×3=7,試寫出Sn=__.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),,當(dāng)時,恒有;

          1)求的表達(dá)式;

          2)設(shè)不等式,的解集為,且,求實數(shù)的取值范圍;

          3)若方程的解集為,求實數(shù)的取值范圍;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正四面體中,在平面內(nèi),點在線段上,,是平面的垂線,在該四面體繞旋轉(zhuǎn)的過程中,直線所成角為,則的最小值是( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的定義域是,且,,當(dāng)時,.

          1)判斷的奇偶性,并說明理由;

          2)求在區(qū)間上的解析式;

          3)是否存在整數(shù),使得當(dāng)時,不等式有解?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A、B,且,為等邊三角形.

          1)求橢圓C的方程;

          2)如圖,點M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點O的對稱點為N;過點Mx軸的垂線,垂足為H,直線與橢圓C交于另一點J,若,試求以線段為直徑的圓的方程;

          3)已知是過點A的兩條互相垂直的直線,直線與圓相交于兩點,直線與橢圓C交于另一點R;求面積取最大值時,直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若數(shù)列項和為

          (1)若首項,且對于任意的正整數(shù)均有,(其中為正實常數(shù)),試求出數(shù)列的通項公式.

          (2)若數(shù)列是等比數(shù)列,公比為,首項為,為給定的正實數(shù),滿足:①,且②對任意的正整數(shù),均有;試求函數(shù)的最大值(用表示)

          查看答案和解析>>

          同步練習(xí)冊答案