日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】過圓錐的高的三等分點作平行于底面的截面,它們把圓錐側(cè)面分成的三部分的面積之比為(
          A.1:2:3
          B.1:3:5
          C.1:2:4
          D.1:3:9

          【答案】B
          【解析】由此可得到三個圓錐, 根據(jù)題意則有:
          底面半徑之比:r1:r2:r3=1:2:3,
          母線長之比:l1:l2:l3=1:2:3,
          側(cè)面積之比:S1:S2:S3=1:4:9,
          所以三部分側(cè)面面積之比:S1:(S2﹣S1):(S3﹣S2)=1:3:5
          故選B
          先從得到的三個圓錐入手,根據(jù)“過圓錐的高的三等分點作平行于底面的截面”,結(jié)合相似比:可知底面半徑之比:r1:r2:r3=1:2:3,母線長之比:l1:l2:l3=1:2:3,側(cè)面積之比:S1:S2:S3=1:4:9,從而得到結(jié)論.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是(
          A.垂直于同一平面的兩平面也平行
          B.與兩條異面直線都相交的兩條直線一定是異面直線
          C.過一點有且只有一條直線與已知直線垂直
          D.垂直于同一直線的兩平面平行

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面.則下列結(jié)論中正確的是( )

          A. mαnα,則mn

          B. mαmβ,則αβ

          C. mn,mα,則nα

          D. mα,αβ,則mβ

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】用數(shù)學(xué)歸納法證明:2n+23n+5n﹣4(n∈N*)能被25整除.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】圓(x+2)2+y2=5關(guān)于原點(0,0)對稱的圓的方程為(
          A.(x﹣2)2+y2=5
          B.x2+(y﹣2)2=5
          C.(x+2)2+(y+2)2=5
          D.x2+(y+2)2=5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=x3-6x2+9x-abc,a<b<c,f(a)=f(b)=f(c)=0,現(xiàn)給出如下結(jié)論:

          ①f(0)f(1)<0; ②f(0)f(1)>0;

          ③f(0)f(3)>0; ④f(0)f(3)<0;

          ⑤f(1)f(3)>0; ⑥f(1)f(3)<0.

          其中正確的結(jié)論是_____.(填序號)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若a>b,x>y,下列不等式不正確的是(
          A.a+x>b+y
          B.y﹣a<x﹣b
          C.|a|x≥|a|y
          D.(a﹣b)x>(a﹣b)y

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知全集U=R,集合A={x|1≤x﹣1<3},B={x|2x﹣9≥6﹣3x}.
          求:①A∪B; ②U(A∩B)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若存在x∈R,使不等式|x﹣1|+|x﹣a|≤a2﹣a成立,則實數(shù)a的取值范圍(
          A.a≥1
          B.a≤﹣1
          C.a≤﹣1或a≥1
          D.﹣1≤a≤1

          查看答案和解析>>

          同步練習(xí)冊答案