日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=2sinx( ).
          (1)求函數(shù)f(x)在( )上的值域;
          (2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.

          【答案】
          (1)解:函數(shù)f(x)=2sinx( ).

          化簡可得:f(x)=2 sinxcosx﹣2sin2x= sin2x+cos2x﹣1=2sin(2x+ )﹣1.

          ∵x∈( )上時(shí),

          可得:2x+ ∈( , ).

          <sin(2x+ )≤1

          故得函數(shù)f(x)在( )上的值域?yàn)椋ī?,1].


          (2)解:∵f(x)=2sin(2x+ )﹣1,

          ∵f(C)=0,

          即sin(2C+ )=

          ∵0<C<π,

          ∴2C+ =

          得:C=

          ∵sinB=sinAsinC,

          可得sin(A+C)=sinAsinC,

          ∴sin(A+ )=sinAsin

          得:( )sinA= cosA.

          那么:tanA= =


          【解析】(1)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,x∈( )上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),即得到f(x)的值域.(2)根據(jù)f(C)=0求出角C,sinB=sinAsinC=sin(A+C)利用和與差公式,即可求tanA的值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知F1 , F2為雙曲線 的左右焦點(diǎn),過F1的直線l與圓x2+y2=b2相切于點(diǎn)M,且|MF2|=2|MF1|,則直線l的斜率是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知從A地到B地共有兩條路徑L1和L2 , 據(jù)統(tǒng)計(jì),經(jīng)過兩條路徑所用的時(shí)間互不影響,且經(jīng)過L1與L2所用時(shí)間落在各時(shí)間段內(nèi)的頻率分布直方圖分別如圖(1)和圖(2).
          現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時(shí)間用于從A地到B地.
          (1)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到B地,甲和乙應(yīng)如何選擇各自的路徑?
          (2)用X表示甲、乙兩人中在允許的時(shí)間內(nèi)能趕到B地的人數(shù),針對(duì)(1)的選擇方案,求X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某班甲、乙兩位同學(xué)在5次階段性檢測中的數(shù)學(xué)成績(百分制)的莖葉圖,甲、乙兩位同學(xué)得分的中位數(shù)分別為x1 , x2 , 得分的方差分別為y1 , y2 , 則下列結(jié)論正確的是(
          A.x1<x2 , y1<y2
          B.x1<x2 , y1>y2
          C.x1>x2 , y1>y2
          D.x1>x2 , y1<y2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),點(diǎn)A到x軸的距離等于|AF|﹣1.

          (1)求拋物線C的方程;
          (2)直線AF與C交于另一點(diǎn)B,拋物線C分別在點(diǎn)A,B處的切線交于點(diǎn)P,D為y軸正半軸上一點(diǎn),直線AD與C交于另一點(diǎn)E,且有|FA|=|FD|,N是線段AE的靠近點(diǎn)A的四等分點(diǎn).
          (i)證明點(diǎn)P在△NAB的外接圓上;
          (ii)△NAB的外接圓周長是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐PABCD中,DA⊥平面PAB,DCABDADC=2,ABAP=4,∠PAB=120°,MPB中點(diǎn).

          (Ⅰ)求證:CM∥平面PAD;

          (Ⅱ)求二面角MACB的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
          (1)當(dāng)a=﹣3時(shí),求不等式f(x)≥3的解集;
          (2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=sin(ωx+φ)(其中|φ|< )的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(diǎn)(
          A.向左平移 個(gè)單位長度
          B.向右平移 個(gè)單位長度
          C.向左平移 個(gè)單位長度
          D.向右平移 個(gè)單位長度

          查看答案和解析>>

          同步練習(xí)冊(cè)答案