日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐P—ABCD底面ABCD是平行四邊形,PF⊥平面ABCD,垂足F在AD上,且AF=FD,F(xiàn)B⊥FC,F(xiàn)B=FC=2,E是BC的中點(diǎn),四面體P—BCF的體積為.

          (Ⅰ)求異面直線EF與PC所成的角;

          (Ⅱ)求點(diǎn)D到平面PBF的距離.

          解:(Ⅰ)由已知VP—BCF=S△BCF·PF=··BF·CF·PF=

          ∴PF=4.

              如圖所示,以F點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系o—xyz,則B(2,0,0),C(0,2,0),P(0,0,4),故E(1,1,0).

          =(1,1,0),=(0,2,-4).

          cos〈,〉=

          ==.

          ∴異面直線EF與PC所成的角為arccos.

          (Ⅱ)平面PBF的單位法向量Equation.3=(0,±1,0).

          ∵||=||=,∠CFD=45°,

          =(-,,0).

          ∴點(diǎn)D到平面PBF的距離為|·|=.


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
          E是PC的中點(diǎn).求證:
          (Ⅰ)CD⊥AE;
          (Ⅱ)PD⊥平面ABE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
          (1)求證:AD⊥PB;
          (2)求三棱錐P-MBD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
          2
          ,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
          (1)求證:PD⊥AC;
          (2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
          AE
          AP
          的值,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
          3
          ,點(diǎn)F是PB中點(diǎn).
          (Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
          (Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
          (Ⅲ)若BE=
          3
          3
          ,求直線PA與平面PDE所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
          2
          ,設(shè)PC與AD的夾角為θ.
          (1)求點(diǎn)A到平面PBD的距離;
          (2)求θ的大;當(dāng)平面ABCD內(nèi)有一個(gè)動(dòng)點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動(dòng)點(diǎn)Q的軌跡方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案