已知函數(shù),若
對
R
恒成立,求實數(shù)的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)若,求a的值;
(2)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間與極值點;
(3)設(shè)函數(shù)是偶函數(shù),若過點A(1,m)
可作曲線y=f(x)的三條切線,求實數(shù)m的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的零點;
(3)若函數(shù)的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分18分)如果函數(shù)的定義域為
,對于定義域內(nèi)的任意
,存在實數(shù)
使得
成立,則稱此函數(shù)具有“
性質(zhì)”.
(1)判斷函數(shù)是否具有“
性質(zhì)”,若具有“
性質(zhì)”求出所有
的值;若不具有“
性質(zhì)”,請說明理由.
(2)已知具有“
性質(zhì)”,且當(dāng)
時
,求
在
上的最大值.
(3)設(shè)函數(shù)具有“
性質(zhì)”,且當(dāng)
時,
.若
與
交點個數(shù)為2013個,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)處取得極值2。
(Ⅰ)求函數(shù)
的表達(dá)式;
(Ⅱ)當(dāng)滿足什么條件時,函數(shù)
在區(qū)間
上單調(diào)遞增?
(Ⅲ)若為
圖象上任意一點,直線與
的圖象切于點P,求直線的斜率
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)已知函數(shù)。
(Ⅰ)若,試判斷并證明
的單調(diào)性;
(Ⅱ)若函數(shù)在
上單調(diào),且存在
使
成立,求
的取值范圍;
(Ⅲ)當(dāng)時,求函數(shù)
的最大值的表達(dá)式
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù)的一系列對應(yīng)值如下表:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù).
(1)若定義域內(nèi)存在,使不等式
成立,求實數(shù)
的最小值;
(2)若函數(shù)在區(qū)間
上恰有兩個不同的零點,求實數(shù)
取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com