日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),其中a為大于零的常數(shù).
          (I)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=1-2x平行,求a的值;
          (II)求函數(shù)f(x)在區(qū)間[1,2]上的最小值.
          【答案】分析:(I)先由所給函數(shù)的表達(dá)式,求導(dǎo)數(shù)fˊ(x),再根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,最后由平行直線的斜率相等方程求a的值即可;
          (II)對(duì)參數(shù)a進(jìn)行分類,先研究f(x)在[1,2]上的單調(diào)性,利用導(dǎo)數(shù)求解f(x)在[1,2]上的最小值問題即可,故只要先求出函數(shù)的極值,比較極值和端點(diǎn)處的函數(shù)值的大小,最后確定出最小值即得.
          解答:解:(x>0)(.4分)
          (I)因?yàn)榍y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=1-2x平行,
          所以f'(1)=-2,即1-a=-2,解得a=3.(6分)
          (II)當(dāng)0<a≤1時(shí),f'(x)>0在(1,2)上恒成立,
          這時(shí)f(x)在[1,2]上為增函數(shù)∴f(x)min=f(1)=a-1.(8分)
          當(dāng)1<a<2時(shí),由f'(x)=0得,x=a∈(1,2)∵對(duì)于x∈(1,a)有f'(x)<0,f(x)在[1,a]上為減函數(shù),
          對(duì)于x∈(a,2)有f'(x)>0,f(x)在[a,2]上為增函數(shù),∴f(x)min=f(a)=lna.(11分)
          當(dāng)a≥2時(shí),f'(x)<0在(1,2)上恒成立,
          這時(shí)f(x)在[1,2]上為減函數(shù),∴
          綜上,f(x)在[1,2]上的最小值為
          ①當(dāng)0<a≤1時(shí),f(x)min=a-1,
          ②當(dāng)1<a<2時(shí),f(x)min=lna,
          ③當(dāng)a≥2時(shí),(13分)
          點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、函數(shù)的最值及其幾何意義、兩條直線平行的判定等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查分類講座思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:黃岡中學(xué) 高一數(shù)學(xué)(下冊(cè))、第四章 三角函數(shù)單元(4.8~4.11)測(cè)試卷 題型:044

          已知函數(shù),其中a為實(shí)常數(shù).

          (1)若x∈R,求f(x)的最小正周期和單調(diào)遞增區(qū)間;

          (2)若時(shí),f(x)的最大值為4,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:吉林省2009-2010學(xué)年第二學(xué)期期末考試高二年級(jí)數(shù)學(xué)科試卷 題型:解答題

           

          已知函數(shù),其中a≥b>c,a+b+c=0.

          (1)求證:有兩個(gè)零點(diǎn);

          (2)若上的最小值為1,最大值為13,求a、b、c的值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)數(shù)學(xué)公式,其中a為常數(shù),e為自然對(duì)數(shù)的底數(shù).
          (1)當(dāng)a=-1時(shí),求f(x)的單調(diào)區(qū)間;
          (2)若f(x)在區(qū)間(0.e]上的最大值為2,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù),其中a為常數(shù).

          (1) 當(dāng)時(shí),求的最大值;

          (2) 若在區(qū)間(0,e]上的最大值為-3,求a的值;

          (3) 當(dāng) 時(shí),試推斷方程=是否有實(shí)數(shù)解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年東北三省長(zhǎng)春、哈爾濱、沈陽、大連第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知函數(shù),其中a為常數(shù),e為自然對(duì)數(shù)的底數(shù).
          (1)當(dāng)a=-1時(shí),求f(x)的單調(diào)區(qū)間;
          (2)若f(x)在區(qū)間(0.e]上的最大值為2,求a的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案