日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線與橢圓有公共焦點,且橢圓過點.

          (1)求橢圓方程;

          (2)點是橢圓的上下頂點,點為右頂點,記過點、、的圓為⊙,過點作⊙ 的切線,求直線的方程;

          (3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點、,試問直線是否經(jīng)過定點,若是,求出定點坐標(biāo);若不是,說明理由.

           

          【答案】

          (1);(2);(3)

          【解析】

          試題分析:(1)由題目給出的條件直接求解的值,則可求出橢圓方程;(2)當(dāng)所求直線斜率不存在時,其方程為,符合題意;當(dāng)直線斜率存在時,可設(shè)其斜率為,寫出直線的點斜式方程,因為直線與圓相切,所以根據(jù)圓心到直線的距離等于圓的半徑可直接求得直線的斜率,從而得到方程;(3)由題意可知,兩直線的斜率都存在,設(shè)AP: ,代入橢圓的方程從而求出點的坐標(biāo),同理再求出點的坐標(biāo),從而可求出直線的方程,由方程可知當(dāng)時,恒成立,所以直線恒過定點

          試題解析:

          (1),則c=2,  又,得

          ∴所求橢圓方程為 .

          (2)M,⊙M:,直線l斜率不存在時,

          直線l斜率存在時,設(shè)為,

          ,解得,

          ∴直線l為 .

          (3)顯然,兩直線斜率存在, 設(shè)AP: ,

          代入橢圓方程,得,解得點,

          同理得,直線PQ:,

          令x=0,得,∴直線PQ過定點

          考點:本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了橢圓的簡單幾何性質(zhì),考查了直線和圓錐曲線的關(guān)系,突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價轉(zhuǎn)化等數(shù)學(xué)思想方法.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:填空題

          已知拋物線與橢圓有相同的焦點是兩曲線的公共點,若,則此橢圓的離心率為         

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年湖北省高二上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

          (13分) (理科)已知雙曲線與橢圓有公共焦點,且以拋物線的準(zhǔn)線為雙曲線的一條準(zhǔn)線.動直線過雙曲線的右焦點且與雙曲線的右支交于兩點.

          (1)求雙曲線的方程;

          (2)無論直線繞點怎樣轉(zhuǎn)動,在雙曲線上是否總存在定點,使恒成立?若存在,求出點的坐標(biāo),若不存在,請說明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知雙曲線與橢圓有公共焦點,且以拋物線的準(zhǔn)線為雙曲線的一條準(zhǔn)線.動直線過雙曲線的右焦點且與雙曲線的右支交于兩點.

          (1)求雙曲線的方程;

          (2)無論直線繞點怎樣轉(zhuǎn)動,在雙曲線上是否總存在定點,使恒成立?若存在,求出點的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年重慶十一中高考數(shù)學(xué)一模訓(xùn)練試卷(二)(解析版) 題型:解答題

          已知雙曲線與橢圓有公共焦點,且以拋物線y2=2x的準(zhǔn)線為雙曲線C的一條準(zhǔn)線.動直線l過雙曲線C的右焦點F且與雙曲線的右支交于P、Q兩點.
          (1)求雙曲線C的方程;
          (2)無論直線l繞點F怎樣轉(zhuǎn)動,在雙曲線C上是否總存在定點M,使MP⊥MQ恒成立?若存在,求出點M的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案