日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 中,的對邊分別是,已知,平面向量,,且.
          (1)求△ABC外接圓的面積;
          (2)已知O為△ABC的外心,由O向邊BC、CA、AB引垂線,垂足分別為D、E、F,求的值.

          (1); (2)

          解析試題分析:(1)由,可得.再根據(jù),即可求出角A,再根據(jù)正弦定理即可得到△ABC外接圓的面積.
          (2)由O為△ABC的外心,由O向邊BC、CA、AB引垂線,垂足分別為D、E、F,由圓心角等于圓周角的兩倍,即可得.所以.同理可得其他兩個(gè),即可得到結(jié)論.
          (1)由題意, 
                             2分
          由于,            3分
                                4分
          2R=              6分
          (2)因?yàn)镺為△ABC的外心,由O向邊BC、CA、AB引垂線,垂足分別為D、E、F,
          所以,故=-----13分
          考點(diǎn):1.向量的數(shù)量積.2.三角函數(shù)的運(yùn)算.3.解三角形的知識(shí).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          已知向量 是第二象限角,,則=    

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知,,且向量不共線.
          (1)若的夾角為,求;
          (2)若向量互相垂直,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)a、b是不共線的兩個(gè)非零向量,
          (1)若=2a-b,=3a+b,=a-3b,求證:A、B、C三點(diǎn)共線;
          (2)若8a+kb與ka+2b共線,求實(shí)數(shù)k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知平面向量a=(,-1),b=.
          (1)若x=(t+2)a+(t2-t-5)b,y=-ka+4b(t,k∈R),且x⊥y,求出k關(guān)于t的關(guān)系式k=f(t).
          (2)求函數(shù)k=f(t)在t∈(-2,2)上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,平面直角坐標(biāo)系中,已知向量,,且。

          (1)求間的關(guān)系;(2)若,求的值及四邊形的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知復(fù)平面內(nèi)平行四邊形ABCD(A,B,C,D按逆時(shí)針排列),A點(diǎn)對應(yīng)的復(fù)數(shù)為2+i,向量對應(yīng)的復(fù)數(shù)為1+2i,向量對應(yīng)的復(fù)數(shù)為3-i.
          (1)求點(diǎn)C,D對應(yīng)的復(fù)數(shù).
          (2)求平行四邊形ABCD的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知向量a=(1,2),b=(-2,m),x=a+(t2+1)b,y=-ka+b,m∈R,k、t為正實(shí)數(shù).
          (1)若a∥b,求m的值;
          (2)若a⊥b,求m的值;
          (3)當(dāng)m=1時(shí),若x⊥y,求k的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:填空題

          已知,則的面積之比為     

          查看答案和解析>>

          同步練習(xí)冊答案