日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個(gè)公共點(diǎn),直線與橢圓只有一個(gè)公共點(diǎn).

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)已知?jiǎng)又本過橢圓的左焦點(diǎn),且與橢圓分別交于兩點(diǎn),試問:軸上是否存在定點(diǎn),使得為定值?若存在,求出該定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

          【答案】(1)(2)在軸上存在點(diǎn),使得為定值

          【解析】

          1)根據(jù)已知求出即得橢圓的標(biāo)準(zhǔn)方程;(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),利用韋達(dá)定理和向量的數(shù)量積求出,此時(shí)為定值;當(dāng)直線的斜率不存在時(shí),直線的方程為,求出此時(shí)點(diǎn)R也滿足前面的結(jié)論,即得解.

          (1)依題意,得,

          故橢圓的標(biāo)準(zhǔn)方程為.

          當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,

          代人橢圓的方程,可得

          設(shè),,則,

          設(shè),則

          為定值,則,解得

          此時(shí)

          點(diǎn)的坐標(biāo)為

          ②當(dāng)直線的斜率不存在時(shí),直線的方程為,代人,得

          不妨設(shè),若,則

          綜上所述,在軸上存在點(diǎn),使得為定值

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正項(xiàng)數(shù)列的首項(xiàng),前n項(xiàng)和滿足

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若數(shù)列是公比為4的等比數(shù)列,且,,也是等比數(shù)列,若數(shù)列單調(diào)遞增,求實(shí)數(shù)的取值范圍;

          (3)若數(shù)列、都是等比數(shù)列,且滿足,試證明: 數(shù)列中只存在三項(xiàng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如下圖所示,ABCD是邊長為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成的角為60°.

          (1)求證:AC平面BDE;

          (2)求二面角F-BE-D的余弦值;

          (3)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM平面BEF,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(為參數(shù)),曲線C的參數(shù)方程為α為參數(shù)).

          )已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(3),判斷點(diǎn)P與直線l位置關(guān)系;

          )設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是( )

          A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個(gè)點(diǎn)

          B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌

          C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

          D.將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其方差也要加上或減去這個(gè)常數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,

          (1)設(shè)上的一點(diǎn),證明:平面平面;

          (2)求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】學(xué)校游園活動(dòng)有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有3個(gè)白球、2個(gè)黑球,乙箱子里裝有1個(gè)白球、2個(gè)黑球,這些球除顏色外完全相同.每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng).(每次游戲結(jié)束后將球放回原箱)

          (1)求在1次游戲中,

          ①摸出3個(gè)白球的概率;

          ②獲獎(jiǎng)的概率;

          (2)求在2次游戲中獲獎(jiǎng)次數(shù)的分布列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)當(dāng)時(shí),求函數(shù)的極值;

          2)求的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】解關(guān)于x的不等式:x2-(a+)x+1≤0 (a∈R,且a≠0)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案