日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).

          (1)求證:PO⊥平面ABCD;
          (2)求異面直線(xiàn)PB與CD所成角的余弦值;
          (3)線(xiàn)段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請(qǐng)說(shuō)明理由.

          【答案】
          (1)證明:在△PAD卡中PA=PD,O為AD中點(diǎn),所以PO⊥AD.

          又側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,

          所以PO⊥平面ABCD


          (2)解:連接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,

          有OD∥BC且OD=BC,所以四邊形OBCD是平行四邊形,

          所以O(shè)B∥DC.

          由(1)知PO⊥OB,∠PBO為銳角,

          所以∠PBO是異面直線(xiàn)PB與CD所成的角.

          因?yàn)锳D=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以O(shè)B=

          在Rt△POA中,因?yàn)锳P= ,AO=1,所以O(shè)P=1,

          在Rt△PBO中,PB= ,所以cos∠PBO= ,

          所以異面直線(xiàn)PB與CD所成的角的余弦值為


          (3)解:假設(shè)存在點(diǎn)Q,使得它到平面PCD的距離為

          設(shè)QD=x,則SDQC= x,由(2)得CD=OB= ,

          在Rt△POC中,PC= ,

          所以PC=CD=DP,SPCD= = ,

          由VpDQC=VQPCD,得x= ,所以存在點(diǎn)Q滿(mǎn)足題意,此時(shí) =


          【解析】(1)根據(jù)線(xiàn)面垂直的判定定理可知,只需證直線(xiàn)PO垂直平面ABCD中的兩條相交直線(xiàn)垂直即可;(2)先通過(guò)平移將兩條異面直線(xiàn)平移到同一個(gè)起點(diǎn)B,得到的銳角或直角就是異面直線(xiàn)所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用VpDQC=VQPCD , 即可得出結(jié)論.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,A=60°,a=3.
          (1)若b=2,求cosB;
          (2)求△ABC的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)).

          (1)當(dāng)曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率大于時(shí),求函數(shù)的單調(diào)區(qū)間;

          (2)若 對(duì)恒成立,求的取值范圍.(提示:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) ,其中, .

          (1)若的一個(gè)極值點(diǎn)為,求的單調(diào)區(qū)間與極小值;

          (2)當(dāng)時(shí), , ,且上有極值,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓C:(x+2)2+y2=1,P(x,y)為圓C上任一點(diǎn),
          (1)求 的最大、最小值;
          (2)求x﹣2y的最大、最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列各組函數(shù)中,f(x)與g(x)表示同一個(gè)函數(shù)的是(
          A.
          B.
          C.f(x)=x,g(x)=(x﹣1)0
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知是定義在上的奇函數(shù),且時(shí), ,則函數(shù)為自然對(duì)數(shù)的底數(shù))的零點(diǎn)個(gè)數(shù)是( )

          A. 0 B. 1 C. 2 D. 3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司即將推車(chē)一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買(mǎi)該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買(mǎi)意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買(mǎi)意愿弱;若得分不低于60分,說(shuō)明購(gòu)買(mǎi)意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

          (1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買(mǎi)該款手機(jī)與年齡有關(guān)?

          購(gòu)買(mǎi)意愿強(qiáng)

          購(gòu)買(mǎi)意愿弱

          合計(jì)

          20~40歲

          大于40歲

          合計(jì)

          (2)從購(gòu)買(mǎi)意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪(fǎng),記抽到的2人中年齡大于40歲的市民人數(shù)為,求的分布列和數(shù)學(xué)期望.

          附: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】經(jīng)過(guò)原點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線(xiàn)的斜率均存在,且直線(xiàn)的斜率之積為.

          (1)求橢圓的離心率;

          (2)設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線(xiàn)經(jīng)過(guò)橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn).若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案