日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (1)求的單調(diào)區(qū)間;
          (2)當(dāng)時(shí),判斷的大小,并說(shuō)明理由;
          (3)求證:當(dāng)時(shí),關(guān)于的方程:在區(qū)間上總有兩個(gè)不同的解.
          (1)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為
          (2)當(dāng)時(shí),
          (3)構(gòu)造函數(shù),然后借助于在區(qū)間、分別存在零點(diǎn),又由二次函數(shù)的單調(diào)性可知最多在兩個(gè)零點(diǎn),進(jìn)而得到結(jié)論。

          試題分析:(1)
          當(dāng)時(shí)可解得,或
          當(dāng)時(shí)可解得
          所以函數(shù)的單調(diào)遞增區(qū)間為,,
          單調(diào)遞減區(qū)間為                         3分
          (2)當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616264447.png" style="vertical-align:middle;" />在單調(diào)遞增,所以
          當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013616264447.png" style="vertical-align:middle;" />在單減,在單增,所能取得的最小值為,,,所以當(dāng)時(shí),
          綜上可知:當(dāng)時(shí),.                   7分
          (3)
          考慮函數(shù),
          ,,

          所以在區(qū)間分別存在零點(diǎn),又由二次函數(shù)的單調(diào)性可知:最多存在兩個(gè)零點(diǎn),所以關(guān)于的方程:在區(qū)間上總有兩個(gè)不同的解                                  10分
          點(diǎn)評(píng):考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,以及利用函數(shù)與方程的思想的綜合運(yùn)用,屬于難度題。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)是自然對(duì)數(shù)的底數(shù),).
          (Ⅰ)求的單調(diào)區(qū)間、最大值;
          (Ⅱ)討論關(guān)于的方程根的個(gè)數(shù)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知,記,
          ().則++…+=                

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          設(shè)點(diǎn)P是曲線y=2x2上的一個(gè)動(dòng)點(diǎn),曲線y=2x2在點(diǎn)P處的切線為l,過(guò)點(diǎn)P且與直線l垂直的直線與曲線y=2x2的另一交點(diǎn)為Q,則PQ的最小值為_____________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知二次函數(shù)和“偽二次函數(shù)” .
          (Ⅰ)證明:只要,無(wú)論取何值,函數(shù)在定義域內(nèi)不可能總為增函數(shù);
          (Ⅱ)在同一函數(shù)圖像上任意取不同兩點(diǎn)A(),B(),線段AB中點(diǎn)為C(),記直線AB的斜率為k.
          (1)對(duì)于二次函數(shù),求證;
          (2)對(duì)于“偽二次函數(shù)” ,是否有(1)同樣的性質(zhì)?證明你的結(jié)論。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)函數(shù)
          (1)求的單調(diào)區(qū)間;
          (2)若關(guān)于的方程在區(qū)間上有唯一實(shí)根,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          函數(shù)導(dǎo)數(shù)是(  )
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù),其中。
          (1)若函數(shù)有極值,求的值;
          (2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
          (3)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知函數(shù)的對(duì)稱中心為M,記函數(shù)的導(dǎo)函數(shù)為, 的導(dǎo)函數(shù)為,則有.若函數(shù)
          ,則可求得:    .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案