日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù) ).

          (1)當(dāng)時,求曲線 在點 處的切線方程;

          (2)求函數(shù) 在區(qū)間 上的最小值.

          【答案】(1)(2)見解析

          【解析】試題分析:1)當(dāng)時, , ,

          ,即曲線在點 處的切線斜率

          由此根據(jù)點斜式能求出曲線 在點 處的切線方程;

          2)由條件知: ,

          當(dāng) 時, , 上單調(diào)遞減,

          上的最小值為: ;

          當(dāng) 時,由 上單調(diào)遞減,在 上單調(diào)遞增.分情況討論當(dāng),當(dāng),當(dāng)時求函數(shù) 在區(qū)間 上的最小值.

          試題解析:(1)當(dāng) 時, ,∴

          又∵

          ,即曲線在點 處的切線斜率

          ∴曲線在點 處的切線方程為 ,即

          (2)由條件知:

          當(dāng) 時, , 上單調(diào)遞減,

          上的最小值為: ;

          當(dāng) 時,由 , 上單調(diào)遞減,在 上單調(diào)遞增.

          當(dāng) 時, 上單調(diào)遞減.

          上的最小值為: ;

          當(dāng) 時, 上單調(diào)遞減,在 上單調(diào)遞增.

          上的最小值為:

          當(dāng) 時, 上單調(diào)遞增減.

          上的最小值為: ;

          綜上所述,當(dāng) 時, 上的最小值為:

          當(dāng)時, 上的最小值為:

          當(dāng)時, 上的最小值為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,過圓O外一點P作圓的切線PC,切點為C,割線PAB、割線PEF分別交圓O于A與B、E與F.已知PB的垂直平分線DE與圓O相切.

          (1)求證:DE∥BF;
          (2)若 ,DE=1,求PB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形 ,

          1)求與平面所成角的正弦值;

          2)線段或其延長線上是否存在點,使平面平面證明你的結(jié)論

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的方程為,過點的直線與拋物線相交于兩點,分別過點作拋物線的兩條切線,記相交于點.

          (1)證明:直線的斜率之積為定值;

          2求證:點在一條定直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|3≤≤27},B={x|>1}.

          (1)分別求A∩B,()∪A;

          (2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線W:y2=4x與圓C:(x-1)2+y2=25交于A,B兩點,點P為劣弧上不同于A,B的一個動點,與x軸平行的直線PQ交拋物線W于點Q,則△PQC的周長的取值范圍是( )

          A. (10,14) B. (12,14)

          C. (10,12) D. (9,11)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點求證:

          1BE平面DMF;

          2平面BDE平面MNG

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓上的焦點為,離心率為

          (1)求橢圓方程;

          2)設(shè)過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且, , 成等比數(shù)列,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知銳角△ABC中內(nèi)角A、B、C所對邊的邊長分別為a、b、c,滿足a2+b2=6abcosC,且
          (1)求角C的值;
          (2)設(shè)函數(shù) ,圖象上相鄰兩最高點間的距離為π,求f(A)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案