某投資公司年初用萬元購置了一套生產(chǎn)設(shè)備并即刻生產(chǎn)產(chǎn)品,已知與生產(chǎn)產(chǎn)品相關(guān)的各種配套費(fèi)用第一年需要支出
萬元,第二年需要支出
萬元,第三年需要支出
萬元,……,每年都比上一年增加支出
萬元,而每年的生產(chǎn)收入都為
萬元.假設(shè)這套生產(chǎn)設(shè)備投入使用
年,
,生產(chǎn)成本等于生產(chǎn)設(shè)備購置費(fèi)與這
年生產(chǎn)產(chǎn)品相關(guān)的各種配套費(fèi)用的和,生產(chǎn)總利潤
等于這
年的生產(chǎn)收入與生產(chǎn)成本的差. 請你根據(jù)這些信息解決下列問題:
(Ⅰ)若,求
的值;
(Ⅱ)若干年后,該投資公司對這套生產(chǎn)設(shè)備有兩個(gè)處理方案:
方案一:當(dāng)年平均生產(chǎn)利潤取得最大值時(shí),以萬元的價(jià)格出售該套設(shè)備;
方案二:當(dāng)生產(chǎn)總利潤取得最大值時(shí),以
萬元的價(jià)格出售該套設(shè)備. 你認(rèn)為哪個(gè)方案更合算?請說明理由.
(Ⅰ)7; (Ⅱ)從投資收益的角度看,方案一比方案二更合算.
解析試題分析:1.由于文字?jǐn)⑹鲚^長,很多考生對題意不甚了了,所建立的函數(shù)模型也是錯(cuò)誤百出,從而導(dǎo)致本題的得分是很低的.2.第(Ⅰ)問中,很多考生在求的時(shí)候,都把等差數(shù)列的前
項(xiàng)和錯(cuò)誤理解為第
項(xiàng)
了,即
.3.第(Ⅱ)問中,一些考生不理解“年平均生產(chǎn)利潤取得最大值”、“生產(chǎn)總利潤
取得最大值”的含義,從而無法建立模型.4. 第(Ⅱ)問中,所建立的模型是對的,并且也求出了
分別等于7和11,但之后就不知道應(yīng)該選擇哪一個(gè)量作為標(biāo)準(zhǔn),來判斷哪個(gè)方案更好.
試題解析:(Ⅰ)由題意知該公司這年需要支出與生產(chǎn)產(chǎn)品相關(guān)的各種配套費(fèi)用是以
為首項(xiàng),
為公差的等差數(shù)列的前
項(xiàng)和.
∴.
由得
,解得
.
∵,∴
,
,
,……,
.
∴的解集為
.
(Ⅱ)(1) 由已知得年平均生產(chǎn)利潤為.
∵,
“”成立
,即
,
∴當(dāng)時(shí),年平均生產(chǎn)利潤取得最大值,若執(zhí)行方案一,總收益為
(萬元).
(2) ∵,
,
∴當(dāng)時(shí),生產(chǎn)總利潤取得最大值,若執(zhí)行方案二,總收益為
(萬元).
∴無論執(zhí)行方案一還是方案二,總收益都為萬元.
∵,∴從投資收益的角度看,方案一比方案二更合算.
注:第(Ⅱ)問答案不唯一,只要言之有理即可.
考點(diǎn):閱讀和建模能力,運(yùn)用函數(shù)、數(shù)列、均值不等式等知識和方法解決實(shí)際問題能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;
(2)若,使
成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是二次函數(shù),不等式
的解集是
,且
在區(qū)間
上的最大值為12.
(1)求的解析式;
(2)設(shè)函數(shù)在
上的最小值為
,求
的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)與兩坐標(biāo)軸分別交于不同的三點(diǎn)A、B、C.
(1)求實(shí)數(shù)t的取值范圍;
(2)當(dāng)時(shí),求經(jīng)過A、B、C三點(diǎn)的圓F的方程;
(3)過原點(diǎn)作兩條相互垂直的直線分別交圓F于M、N、P、Q四點(diǎn),求四邊形的面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為
,當(dāng)年產(chǎn)量不足80千件時(shí),
(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),
(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
⑴ 求函數(shù)的單調(diào)區(qū)間;
⑵ 如果對于任意的,
總成立,求實(shí)數(shù)
的取值范圍;
⑶ 設(shè)函數(shù),
. 過點(diǎn)
作函數(shù)
圖像的所有切線,令各切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列
,求數(shù)列
的所有項(xiàng)之和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了降低能源損耗,某城市對新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系:
,若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)
為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及
的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
進(jìn)貨原價(jià)為80元的商品400個(gè),按90元一個(gè)售出時(shí),可全部賣出.已知這種商品每個(gè)漲價(jià)一元,其銷售數(shù)就減少20個(gè),問售價(jià)應(yīng)為多少時(shí)所獲得利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com