日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標(biāo)系xOy中,已知直線l1:y=tanαx(0≤a<π,α ),拋物線C: (t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系 (Ⅰ)求直線l1和拋物線C的極坐標(biāo)方程;
          (Ⅱ)若直線l1和拋物線C相交于點(diǎn)A(異于原點(diǎn)O),過原點(diǎn)作與l1垂直的直線l2 , l2和拋物線C相交于點(diǎn)B(異于原點(diǎn)O),求△OAB的面積的最小值.

          【答案】解:(Ⅰ)∵直線l1:y=tanαx(0≤a<π,α ), ∴直線l1是過原點(diǎn)且傾斜角為α 的直線,
          其極坐標(biāo)方程為θ=α( ),
          拋物線C的普通方程為y2=4x,
          其極坐標(biāo)方程為(ρsinθ)2=4ρcosθ,
          化簡得ρsin2θ=4cosθ.
          (Ⅱ)由直線l1和拋物線C有兩個(gè)交點(diǎn)知α≠0,
          把θ=α代入ρsin2θ=4cosθ,得ρA= ,
          可知直線l2的極坐標(biāo)方程為 ,(ρ∈R),
          代入ρsin2θ=4cosθ,得ρBcos2α=﹣4sinα,
          所以ρB=﹣
          = = ≥16,
          ∴△OAB的面積的最小值為16.
          【解析】(Ⅰ)直線l1是過原點(diǎn)且傾斜角為α 的直線,拋物線C的普通方程為y2=4x,由此能求出直線l1和拋物線C的極坐標(biāo)方程.(Ⅱ)由直線l1和拋物線C有兩個(gè)交點(diǎn)知α≠0,把θ=α代入ρsin2θ=4cosθ,得ρA= ,直線l2的極坐標(biāo)方程為 ,(ρ∈R),代入ρsin2θ=4cosθ,求出ρB=﹣ ,由此能求出△OAB的面積的最小值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某手機(jī)賣場對(duì)市民進(jìn)行國產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取100名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如下:

          分組(歲)

          頻數(shù)

          [25,30)

          x

          [30,35)

          y

          [35,40)

          35

          [40,45)

          30

          [45,50]

          10

          合計(jì)

          100

          (Ⅰ)求頻率分布表中x、y的值,并補(bǔ)全頻率分布直方圖;
          (Ⅱ)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加國產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這20人重隨機(jī)抽取2人各贈(zèng)送精美禮品一份,設(shè)這2名市民中年齡在[35,40)內(nèi)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為(
          A.4.5
          B.6
          C.7.5
          D.9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
          (1)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
          (2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

          日需求量n

          14

          15

          16

          17

          18

          19

          20

          頻數(shù)

          10

          20

          16

          16

          15

          13

          10

          以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
          (i)若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
          (ii)若花店計(jì)劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知△ABC的面積為accosB,BC的中點(diǎn)為D. (Ⅰ) 求cosB的值;
          (Ⅱ) 若c=2,asinA=5csinC,求AD的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】當(dāng)今,手機(jī)已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機(jī)的人冠上了名號(hào)“低頭族”,手機(jī)已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對(duì)低頭族的認(rèn)識(shí),從某社區(qū)的500名市民中,隨機(jī)抽取n名市民,按年齡情況進(jìn)行統(tǒng)計(jì)的得到頻率分布表和頻率分布直方圖如下:

          組數(shù)

          分組(單位:歲)

          頻數(shù)

          頻率

          1

          [20,25)

          5

          0.05

          2

          [25,30)

          20

          0.20

          3

          [30,35)

          a

          0.35

          4

          [35,40)

          30

          b

          5

          [40,45]

          10

          0.10

          合計(jì)

          n

          1.00


          (1)求出表中的a,b,n的值,并補(bǔ)全頻率分布直方圖;
          (2)媒體記者為了做好調(diào)查工作,決定從所隨機(jī)抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在[30,40)的選取2名擔(dān)任主要發(fā)言人.記這2名主要發(fā)言人年齡在[35,40)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題的敘述:
          ①若p:x>0,x2﹣x+1>0,則¬p:x0≤0,x02﹣x0+1≤0;
          ②三角形三邊的比是3:5:7,則最大內(nèi)角為 π;
          ③若 = ,則 = ;
          ④ac2<bc2是a<b的充分不必要條件,
          其中真命題的個(gè)數(shù)為(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= (a≠0).
          (1)試討論y=f(x)的極值;
          (2)若a>0,設(shè)g(x)=x2emx , 且任意的x1 , x2∈[0,2],f(x1)﹣g(x2)≥﹣1恒成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0, ),其部分圖象如圖所示. (I)求f(x)的解析式;
          (II)求函數(shù) 在區(qū)間 上的最大值及相應(yīng)的x值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案