【題目】設(shè)拋物線的焦點為
,過點
作垂直于
軸的直線與拋物線交于
,
兩點,且以線段
為直徑的圓過點
.
(1)求拋物線的方程;
(2)若直線與拋物線
交于
,
兩點,點
為曲線
:
上的動點,求
面積的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為2的正方形,
為
的中點,以
為折痕把
折起,使點
到達點
的位置,且
.
(1)求證:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,明朝科學(xué)家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理(如圖1).因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用(如圖2).假定在水流量穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.因筒車上盛水筒的運動具有周期性,可以考慮利用三角函數(shù)模型刻畫盛水筒(視為質(zhì)點)的運動規(guī)律.將筒車抽象為一個幾何圖形,建立直角坐標系(如圖3).設(shè)經(jīng)過t秒后,筒車上的某個盛水筒從點P0運動到點P.由筒車的工作原理可知,這個盛水筒距離水面的高度H(單位:
),由以下量所決定:筒車轉(zhuǎn)輪的中心O到水面的距離h,筒車的半徑r,筒車轉(zhuǎn)動的角速度ω(單位:
),盛水筒的初始位置P0以及所經(jīng)過的時間t(單位:
).已知r=3
,h=2
,筒車每分鐘轉(zhuǎn)動(按逆時針方向)1.5圈, 點P0距離水面的高度為3.5
,若盛水筒M從點P0開始計算時間,則至少需要經(jīng)過_______
就可到達最高點;若將點
距離水面的高度
表示為時間
的函數(shù),則此函數(shù)表達式為_________.
圖1 圖2 圖3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某藝術(shù)團組織的“微視頻展示”活動中,該團體將從微視頻的“點贊量”和“專家評分”兩個角度來進行評優(yōu).若A視頻的“點贊量”和“專家評分”中至少有一項高于B視頻,則稱A視頻不亞于B視頻.已知共有5部微視頻展,如果某微視頻不亞于其他4部視頻,就稱此視頻為優(yōu)秀視頻.那么在這5部微視頻中,最多可能有_______個優(yōu)秀視頻.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B分別是雙曲線的左右頂點,設(shè)過
的直線PA,PB與雙曲線分別交于點M,N,直線MN交x軸于點Q,過Q的直線交雙曲線的于S,T兩點,且
,則
的面積( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,在圓
:
上任取一點
,
的垂直平分線交
于點
.(如圖).
(1)求點的軌跡方程
;
(2)若過點的動直線
與(1)中的軌跡
相交于
、
兩點.問:平面內(nèi)是否存在異于點
的定點
,使得
恒成立?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過A(5,3),B(4,4)兩點,且圓心在x軸上.
(1)求圓C的標準方程;
(2)若直線l過點(5,2),且被圓C所截得的弦長為6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
,以原點0為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若曲線方程中的參數(shù)是
,且
與
有且只有一個公共點,求
的普通方程;
(2)已知點,若曲線
方程中的參數(shù)是
,
,且
與
相交于
,
兩個不同點,求
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com