日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)fx)=aR).

          (Ⅰ)若f(1)=2,求函數(shù)y=fx)-2x[,2]上的值域;

          (Ⅱ)當(dāng)a∈(0,)時(shí),試判斷fx)在(0,1]上的單調(diào)性,并用定義證明你的結(jié)論.

          【答案】(Ⅰ)[-,](Ⅱ)見解析

          【解析】

          (Ⅰ)根據(jù)題意,由f(1)=2可得,解可得a的值,即可得y=f(x)-2x的解析式,設(shè)g(x)=-x,分析易得g(x)在[,2]上為減函數(shù),據(jù)此分析函數(shù)g(x)的最值,即可得答案;

          (Ⅱ)設(shè)0<x1<x2≤1,由作差法分析,即可得答案.

          (Ⅰ)根據(jù)題意,函數(shù)fx=,

          f1=2,則=2,解可得a=,則fx==x+,

          y=fx-2x=-x,設(shè)gx=-x,分析易得gx)在[,2]上為減函數(shù),

          g=2-=,g2=-2=-;

          y=fx-2x[2]上的值域?yàn)?/span>[-,];

          (Ⅱ)fx==2ax+,當(dāng)a∈0,)時(shí),在(0,1]上為減函數(shù),

          證明:設(shè)0x1x2≤1,

          fx1-fx2=2ax1+-2ax2+=2ax1x2-1

          又由a∈0,)且0x1x2≤1,

          則(x1-x2)<0,(2ax1x2-1)<0,

          fx1-fx2)>0

          即函數(shù)fx)在(0,1]上為減函數(shù).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)直線過點(diǎn),且傾斜角為

          (1)寫出直線的標(biāo)準(zhǔn)參數(shù)方程;

          (2)設(shè)此直線與曲線( 為參數(shù))交于兩點(diǎn),求的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列各組函數(shù)是同一函數(shù)的是

          ; ②;

          ; ④

          A. ②③ B. ①③ C. ③④ D. ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面上,過點(diǎn)P作直線l的垂線所得的垂足稱為點(diǎn)P在直線l上的投影,由區(qū)域 中的點(diǎn)在直線x+y﹣2=0上的投影構(gòu)成的線段記為AB,則|AB|=( 。
          A.2
          B.4
          C.3
          D.6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知不過第二象限的直線lax-y-4=0與圓x2+(y-1)2=5相切.

          (1)求直線l的方程;

          (2)若直線l1過點(diǎn)(3,-1)且與直線l平行,直線l2與直線l1關(guān)于直線y=1對稱,求直線l2的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB.
          (1)證明:A=2B
          (2)若△ABC的面積S= ,求角A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          (1)求曲線的直角坐標(biāo)方程;

          (2)當(dāng)有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn
          (1)求{an}的通項(xiàng)公式;
          (2)求{bn}的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本題滿分10分)已知半徑為的圓的圓心M在軸上,圓心M的橫坐標(biāo)是整數(shù),且圓M與直線相切.

          求:()求圓M的方程;

          )設(shè)直線與圓M相交于兩點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案