日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 平面直角坐標系xOy中,動點P從點P0(4,0)出發(fā),運動過程中,到定點F(-2,0)的距離與到定直線l:x=-8的距離之比為常數(shù).
          ①求點P的軌跡方程;
          ②在軌跡上是否存在點M(s,t),使得以M為圓心且經(jīng)過定點F(-2,0)的圓與直線x=8相交于兩點A、B?若存在,求s的取值范圍;若不存在,說明理由.
          分析:①直接代入公式即可求得點P的軌跡方程;
          ②先把圓與直線x=8相交于兩點轉(zhuǎn)化為圓心M到直線x=8的距離小于圓的半徑|MF|;再借助于①的結(jié)果即可求s的取值范圍.
          解答:解:①設(shè)P(x,y)是軌跡上任意一點,根據(jù)兩點距離公式和點到直線距離公式,依題意有,
          (x+2)2+y2
          |x+8|
          =
          4+2
          4+8
          =
          1
          2
          ,化簡得
          x2
          16
          +
          y2
          12
          =1

          ②“圓與直線x=8相交于兩點”當(dāng)且僅當(dāng)圓心M到直線x=8的距離小于圓的半徑|MF|,|s-8|<|MF|,
          由①知|MF|=
          1
          2
          |s+8|
          ,
          所以|s-8|<
          1
          2
          |s+8|
          ,
          又由①知-4≤s≤4,
          所以8-s<
          1
          2
          (s+8)
          ,解得
          8
          3
          <s≤4
          點評:本題是橢圓與圓的綜合,解題要求先用軌跡法求軌跡方程,再討論動點的幾何性質(zhì),關(guān)鍵是數(shù)形結(jié)合,將方程中數(shù)量的幾何意義應(yīng)用于曲線幾何屬性的量化,將①的結(jié)果自然地應(yīng)用于②的求解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標系xOy中,“方程
          x2
          k-1
          +
          y2
          k-3
          =1
          表示焦點在x軸上的雙曲線”的充要條件是k∈
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標系xOy中,Pn(n,n2)(n∈N+)是拋物線y=x2上的點,△OPnPn+1的面積為Sn
          (1)求Sn;
          (2)化簡
          1
          S1
          +
          1
          S2
          +…+
          1
          Sn
          ;
          (3)試證明S1+S2+…+Sn=
          n(n+1)(n+2)
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知平面直角坐標系xOy中,A(4+2
          3
          ,2),B(4,4)
          ,圓C是△OAB的外接圓.
          (1)求圓C的方程;
          (2)若過點(2,6)的直線l被圓C所截得的弦長為4
          3
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標系xOy中,直線l的參數(shù)方程為:
          x=-2+
          3
          5
          t
          y=2+
          4
          5
          t
          (t為參數(shù)),它與曲線C:(y-2)2-x2=1交于A,B兩點.
          (1)求|AB|的長;
          (2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,設(shè)點P的極坐標為(2
          2
          ,
          4
          )
          ,求點P到線段AB中點M的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標系xOy中,已知矩形ABCD的兩邊AB,CD分別落在x軸、y軸的正半軸上,且AB=2,AD=4,點A與坐標原點重合.現(xiàn)將矩形折疊,使點A落在線段DC上,若折痕所在的直線的斜率為k,試寫出折痕所在直線的方程及k的范圍.

          查看答案和解析>>

          同步練習(xí)冊答案