日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 直線l的方程為y=x+3,在l上任取一點(diǎn)P,若過點(diǎn)P且以雙曲線12-4=3的焦點(diǎn)為橢圓的焦點(diǎn)作橢圓,那么具有最短長軸的橢圓方程為
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且,若過,三點(diǎn)的圓恰好與直線相切. 過定點(diǎn)的直線與橢圓交于,兩點(diǎn)(點(diǎn)在點(diǎn)之間).

          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)直線的斜率,在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形. 如果存在,求出的取值范圍,如果不存在,請說明理由;
          (Ⅲ)若實(shí)數(shù)滿足,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分分)
          (普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點(diǎn).
          (1)求橢圓的方程;
          (2)若直線與橢圓交于、兩點(diǎn),,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (13分)已知中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)為(0 ,),且過點(diǎn),過A作傾斜角互補(bǔ)的兩條直線,它們與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B和點(diǎn)C。
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)求證:直線BC的斜率為定值,并求這個(gè)定值。
          (3)求三角形ABC的面積最大值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          過橢圓的右焦點(diǎn)F作斜率為與橢圓交于A、B兩點(diǎn),且坐標(biāo)原點(diǎn)O到直線l的距離d滿足:
          (I)證明點(diǎn)A和點(diǎn)B分別在第一、三象限;
          (II)若的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (12分)已知橢圓C的焦點(diǎn)為,長軸長為6,
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)已知過點(diǎn)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)已知橢圓,直線.橢圓上是否存在一點(diǎn),它到直線的距離最?最小距離是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          橢圓的長軸長為10,其焦點(diǎn)到中心的距離為4,則這個(gè)橢圓的標(biāo)準(zhǔn)方程為(   )
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          、是橢圓的兩個(gè)焦點(diǎn),為橢圓上一點(diǎn),且∠,則Δ的面積為(   )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案