日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,在四棱錐中,底面且邊長(zhǎng)為的菱形,側(cè)面為正三角形,其所在平面垂直于底面.

          (1)若邊的中點(diǎn),求證:平面.

          (2)求證:.

          (3)若邊的中點(diǎn),能否在上找出一點(diǎn),使平面 平面?

          【答案】(1)見解析;(2)見解析;(3)見解析

          【解析】

          (1)證明,利用面面垂直的性質(zhì)即可證明(2)平面即可得(3)存在點(diǎn),且的中點(diǎn),證明平面,即可證出平面 平面.

          證明:連接,

          因?yàn)?/span>是等邊三角形,邊的中點(diǎn),所以

          因?yàn)槠矫?/span>平面,所以平面,所以

          因?yàn)樗倪呅?/span>是菱形,所以.又因?yàn)?/span>,所以是等邊三角形,所以.又因?yàn)?/span>,,所以

          (2)證明:因?yàn)?/span>,,,所以平面.又因?yàn)?/span> 平面,所以

          (3)存在點(diǎn),且的中點(diǎn).證明如下:連接,連接

          因?yàn)?/span>,又分別是,的中點(diǎn),連接,所以,所以四邊形是平行四邊形,所以.又因?yàn)?/span>,所以.由(1)知平面,所以平面.又 平面,所以平面平面

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)、在拋物線上,且、三點(diǎn)共線.若圓的直徑為.

          1)求拋物線的標(biāo)準(zhǔn)方程;

          2)過點(diǎn)的直線與拋物線交于點(diǎn),,分別過、兩點(diǎn)作拋物線的切線,證明直線,的交點(diǎn)在定直線上,并求出該直線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

          平均每天鍛煉的時(shí)間/分鐘

          總?cè)藬?shù)

          20

          36

          44

          50

          40

          10

          將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.

          (1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

          鍛煉不達(dá)標(biāo)

          鍛煉達(dá)標(biāo)

          合計(jì)

          20

          110

          合計(jì)

          并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?

          (2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會(huì)交流,

          (i)求這10人中,男生、女生各有多少人?

          (ii)從參加體會(huì)交流的10人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

          參考公式:,其中.

          臨界值表

          0.10

          0.05

          0.025

          0.010

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正三棱柱(底面是正三角形,側(cè)棱垂直底面)的各條棱長(zhǎng)均相等,的中點(diǎn),、分別是、上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足.當(dāng)、運(yùn)動(dòng)時(shí),下列結(jié)論中正確的個(gè)數(shù)是(

          ①平面平面

          ②三棱錐的體積為定值;

          可能為直角三角形;

          ④平面與平面所成的銳二面角范圍為.

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在直角梯形ABCD中,ADC=90°,CDAB,AB=4,AD=CD=2.將ADC沿AC折起,使平面ADC平面ABC,得到幾何體D﹣ABC,如圖2所示.

          (Ⅰ)求證:BC平面ACD;

          (Ⅱ)求幾何體D﹣ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),直線為曲線的切線(為自然對(duì)數(shù)的底數(shù)).

          (1)求實(shí)數(shù)的值;

          (2)用表示中的最小值,設(shè)函數(shù),若函數(shù)

          為增函數(shù),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面四邊形ABCD中,EFAD,BD中點(diǎn),,,將沿對(duì)角線BD折起至,使平面平面BCD,則四面體中,下列結(jié)論不正確的是(

          A.平面

          B.異面直線CD所成的角為

          C.異面直線EF所成的角為

          D.直線與平面BCD所成的角為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】張強(qiáng)同學(xué)進(jìn)行三次定點(diǎn)投籃測(cè)試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為

          1)求張強(qiáng)同學(xué)三次投籃至少命中一次的概率;

          2)記張強(qiáng)同學(xué)三次投籃命中的次數(shù)為隨機(jī)變量,求的概率分布及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),的導(dǎo)函數(shù),且.

          1)求實(shí)數(shù)的值;

          2)若函數(shù)處的切線經(jīng)過點(diǎn),求函數(shù)的極值;

          3)若關(guān)于的不等式對(duì)于任意的恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案