日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M為BC的中點(diǎn).
          (1)證明:AM⊥PM;
          (2)求二面角P-AM-D的大。

          【答案】分析:(1)利用勾股定理的逆定理、線面與面面垂直的判定和性質(zhì)定理即可證明;
          (2)利用三垂線定理或線面垂直的性質(zhì)定理及二面角的定義、正切函數(shù)即可得出.
          解答:(1)證明:如圖所示,取CD的中點(diǎn)E,連接PE,EM,EA,
          ∵△PCD為正三角形,
          ∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
          ∵平面PCD⊥平面ABCD,
          ∴PE⊥平面ABCD,而AM?平面ABCD,∴PE⊥AM.
          ∵四邊形ABCD是矩形,
          ∴△ADE,△ECM,△ABM均為直角三角形,
          由勾股定理可求得EM=,AM=,AE=3,
          ∴EM2+AM2=AE2.∴AM⊥EM.
          又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.
          (2)解:由(1)可知:EM⊥AM,PM⊥AM,
          ∴∠PME是二面角P-AM-D的平面角.
          在Rt△PEM中,tan∠PME===1,∴∠PME=45°.
          ∴二面角P-AM-D的大小為45°.
          點(diǎn)評:熟練掌握線面與面面垂直的判定和性質(zhì)定理、三垂線定理、二面角的定義、正切函數(shù)及勾股定理的逆定理是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
          2
          ,M為BC的中點(diǎn).
          (1)證明:AM⊥PM;
          (2)求二面角P-AM-D的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示:邊長為2的正方形ABFC和高為2的直角梯形ADEF所在的平面互相垂直且DE=
          2
          ,ED∥AF且∠DAF=90°.
          (1)求BD和面BEF所成的角的余弦;
          (2)線段EF上是否存在點(diǎn)P使過P、A、C三點(diǎn)的平面和直線DB垂直,若存在,求EP與PF的比值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年安徽皖南八校聯(lián)考)(本小題滿分14分)

          如圖所示,邊長為2的等邊△所在的平面垂直于矩形所在的平面,,的中點(diǎn).

          (1)證明:

          (2)求二面角的大;

          (3)求點(diǎn)到平面的距離.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示:邊長為2的正方形ABFC和高為2的直角梯形ADEF所在的平面互相垂直且DE=,ED//AF且∠DAF=90°。

             (1)求BD和面BEF所成的角的余弦;

           
             (2)線段EF上是否存在點(diǎn)P使過P、A、C三點(diǎn)的平面和直線DB垂直,若存在,求EPPF的比值;若不存在,說明理由。

          1,3,5

           
           


          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第四次(4月)周測文科數(shù)學(xué)試卷(解析版) 題型:選擇題

          如圖所示,邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率是,則陰影區(qū)域的面積為(   )

            

          A.             B.              C.              D.無法計算

           

          查看答案和解析>>

          同步練習(xí)冊答案