日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且f(﹣x)=f(x),則(
          A.f(x)在(0, )單調(diào)遞增
          B.f(x)在( , )單調(diào)遞減
          C.f(x)在( )單調(diào)遞增
          D.f(x)在( ,π)單調(diào)遞增

          【答案】D
          【解析】解:f(x)=sin(ωx+φ)+cos(ωx+φ)= [ sin(ωx+φ)+ cos(ωx+φ)]= sin(ωx+φ+ ), ∵函數(shù)的最小正周期為2π,
          ∴T= =π,解得ω=2,
          即f(x)= sin(2x+φ+ ),
          ∵f(﹣x)=f(x),
          ∴函數(shù)f(x)為偶函數(shù),則φ+ = +kπ,
          即φ= +kπ,
          ∵|φ|< ,∴當(dāng)k=0時,φ= ,
          即f(x)= sin(2x+ + )= sin(2x+ )= cos2x,
          由2kπ﹣π≤2x≤2kπ,k∈Z,
          即kπ﹣ ≤x≤kπ,k∈Z,
          故函數(shù)的遞增區(qū)間為[kπ﹣ ,kπ],k∈Z,
          由2kπ≤2x≤2kπ+π,k∈Z,
          即kπ≤x≤kπ+ ,k∈Z,
          故函數(shù)的遞減區(qū)間為[kπ,kπ+ ],k∈Z,
          則當(dāng)k=1時,函數(shù)遞增區(qū)間為[ ,π],
          則f(x)在( ,π),
          故選:D
          利用輔助角公式將函數(shù)進(jìn)行化簡,結(jié)合函數(shù)的周期和奇偶性求出函數(shù)的解析式即可得到結(jié)論.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a1=10,S5≥S6 , 下列四個命題中,假命題是(
          A.公差d的最大值為﹣2
          B.S7<0
          C.記Sn的最大值為K,K的最大值為30
          D.a2016>a2017

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四棱錐P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,過點(diǎn)B作直線l∥PD,Q為直線l上一動點(diǎn).
          (1)求證:QP⊥AC;
          (2)當(dāng)二面角Q﹣AC﹣P的大小為120°時,求QB的長;
          (3)在(2)的條件下,求三棱錐Q﹣ACP的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平行四邊形ABCD中,AB=2,AD=1, =﹣1,點(diǎn)M在邊CD上,則 的最大值為(
          A.2
          B.2 ﹣1
          C.5
          D. ﹣1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2+(1﹣2a)x﹣lnx(a∈R).
          (1)求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
          (2)若A(x1 , y1),B(x2 , y2),C(x0 , y0)是函數(shù)f(x)圖象上不同的三點(diǎn),且x0= ,試判斷f′(x0)與 之間的大小關(guān)系,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,為測量山高M(jìn)N,選擇A和另一座山的山頂C為測量觀測點(diǎn).從A點(diǎn)測得 M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=m.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
          (1)解不等式f(x)≥(m+n)x;
          (2)設(shè)max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 =(sinx,mcosx), =(3,﹣1).
          (1)若 ,且m=1,求2sin2x﹣3cos2x的值;
          (2)若函數(shù)f(x)= 的圖象關(guān)于直線x= 對稱,求函數(shù)f(2x)在[ , ]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,角A、B均為銳角,則cosA>sinB是△ABC為鈍角三角形的( )
          A.充分不必要條件
          B.必要不充分條件
          C.充要條件
          D.既不充分也不必要條件

          查看答案和解析>>

          同步練習(xí)冊答案