日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓方程為,左,右焦點(diǎn)分別為,上頂點(diǎn)為A,是面積為4的直角三角形.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)過作直線與橢圓交于P,Q兩點(diǎn),若,求面積的取值范圍.

          【答案】12

          【解析】

          1)由是面積為4的等腰直角三角形,可得,結(jié)合三角形的面積公式解方程可得,求得,進(jìn)而得到所求橢圓方程;

          2)過直線分斜率存在和不存在分別求解,當(dāng)斜率存在時(shí)設(shè)直線方程設(shè)為,聯(lián)立橢圓方程,運(yùn)用韋達(dá)定理,以及向量數(shù)量積的坐標(biāo)表示,結(jié)合條件可得的范圍,再由三角形的面積公式可得的面積,結(jié)合運(yùn)用韋達(dá)定理,可得所求范圍.

          解:(1)由已知可得等腰直三角形,則

          ,解得.

          所以橢圓的標(biāo)準(zhǔn)方程方程為.

          2)設(shè),.

          ①當(dāng)直線斜率k不存在時(shí)

          ,,

          這與不符.

          ②當(dāng)直線斜率k存在時(shí)

          可設(shè)直線的方程為,聯(lián)立方程,

          代入化歸消元得,

          所以,.

          .

          點(diǎn)到直線的距離.

          所以的面積

          .

          設(shè),則,.

          因?yàn)?/span>,所以,

          所以.

          綜上所述,面積的取值范圍是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).(是自然對數(shù)的底數(shù))

          1)求的單調(diào)遞減區(qū)間;

          2)記,若,試討論上的零點(diǎn)個(gè)數(shù).(參考數(shù)據(jù):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某購物網(wǎng)站開展一種商品的預(yù)約購買,規(guī)定每個(gè)手機(jī)號只能預(yù)約一次,預(yù)約后通過搖號的方式?jīng)Q定能否成功購買到該商品.規(guī)則如下:(。⿹u號的初始中簽率為;(ⅱ)當(dāng)中簽率不超過時(shí),可借助“好友助力”活動增加中簽率,每邀請到一位好友參與“好友助力”活動可使中簽率增加.為了使中簽率超過,則至少需要邀請________位好友參與到“好友助力”活動.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》中勾股容方問題:今有勾五步,股十二步,問勾中容方幾何?魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問題的一般解法:如圖1,用對角線將長和寬分別為的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點(diǎn),作直角三角形的內(nèi)接正方形對角線,過點(diǎn)于點(diǎn),則下列推理正確的是(

          ①由圖1和圖2面積相等得

          ②由可得;

          ③由可得

          ④由可得

          A.①②③④B.①②④C.②③④D.①③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知多面體中,四邊形為菱形,為正四面體,且.

          1)求證:平面

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在梯形ABCD中,ABCD,ADDCBC1,∠ABC60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF1

          1)證明:BC⊥平面ACFE;

          2)設(shè)點(diǎn)M在線段EF上運(yùn)動,平面MAB與平面FCB所成銳二面角為θ,求cosθ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),的導(dǎo)函數(shù).

          1)若,求處的切線方程;

          2)若可上單調(diào)遞增,求的取值范圍;

          3)求證:當(dāng)時(shí)在區(qū)間內(nèi)存在唯一極大值點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知.

          (1)當(dāng)時(shí),求函數(shù)圖象在處的切線方程;

          (2)若對任意,不等式恒成立,求的取值范圍;

          (3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊答案