日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù), .

          (1)求的單調(diào)區(qū)間;

          (2)若圖像上任意一點(diǎn)處的切線的斜率的取值范圍;

          (3)若對于區(qū)間上任意兩個(gè)不相等的實(shí)數(shù)都有成立,求的取值范圍.

          【答案】(1)見解析;(2);(3)

          【解析】試題分析:

          1求導(dǎo)數(shù)后,解不等式可得函數(shù)的單調(diào)區(qū)間.(2由題意可求得導(dǎo)函數(shù)的最小值為,可得,結(jié)合,可得,即為所求范圍.(3)由題意得當(dāng)時(shí), 在區(qū)間上恒單調(diào)遞減,故有.然后根據(jù)的取值的到函數(shù)的單調(diào)性,從而去掉中的絕對值,將問題轉(zhuǎn)化為函數(shù)在區(qū)間上單調(diào)的問題處理,結(jié)合導(dǎo)函數(shù)的符號(hào)可求得所求范圍.

          試題解析

          (1)由,

          因?yàn)?/span>,

          所以由;

          所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

          (2)由(1)可知,

          所以,

          ,得

          整理得,

          解得

          ,

          所以

          故實(shí)數(shù)的取值范圍為

          (3)不妨設(shè)

          當(dāng)時(shí), 在區(qū)間上恒單調(diào)遞減,有

          ①當(dāng)時(shí), 在區(qū)間上單調(diào)遞減,

          ,

          等價(jià)于,

          ,由在區(qū)間上單調(diào)遞減,

          所以當(dāng)時(shí), 恒成立,

          所以,

          解得

          ③當(dāng), 在區(qū)間上單調(diào)遞增,

          等價(jià)于,

          ,由在區(qū)間上單調(diào)遞減,

          所以當(dāng)時(shí), 恒成立,

          所以,

          解得,

          綜上可得實(shí)數(shù)的取值范圍為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

          1)求a,b的值;

          2)判斷函數(shù)的單調(diào)性,并用定義證明;

          3)當(dāng)時(shí),恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)是奇函數(shù).

          1)求實(shí)數(shù)的值;

          2)若,對任意恒成立,求實(shí)數(shù)取值范圍;

          3)設(shè),,問是否存在實(shí)數(shù)使函數(shù)上的最大值為?若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司需要對所生產(chǎn)的三種產(chǎn)品進(jìn)行檢測,三種產(chǎn)品數(shù)量(單位:件)如下表所示:

          產(chǎn)品

          A

          B

          C

          數(shù)量(件)

          180

          270

          90

          采用分層抽樣的方法從以上產(chǎn)品中共抽取6.

          1)求分別抽取三種產(chǎn)品的件數(shù);

          2)將抽取的6件產(chǎn)品按種類編號(hào),分別記為,現(xiàn)從這6件產(chǎn)品中隨機(jī)抽取2.

          (。┯盟o編號(hào)列出所有可能的結(jié)果;

          (ⅱ)求這兩件產(chǎn)品來自不同種類的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列結(jié)論:函數(shù)是同一函數(shù);函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域?yàn)?/span>;函數(shù)的遞增區(qū)間為;其中正確的個(gè)數(shù)為( )

          A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[2018·郴州期末]已知三棱錐中,垂直平分,垂足為是面積為的等邊三角形,,平面,垂足為,為線段的中點(diǎn).

          (1)證明:平面

          (2)求與平面所成的角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】AB為過拋物線焦點(diǎn)F的弦,P為AB中點(diǎn),A、B、P在準(zhǔn)線l上射影分別為M、N、Q,則下列命題: 以AB為直徑作圓,則此圓與準(zhǔn)線l相交;;;、O、N三點(diǎn)共線為原點(diǎn),正確的是______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;

          (2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】質(zhì)檢部門對某工廠甲、乙兩個(gè)車間生產(chǎn)的12個(gè)零件質(zhì)量進(jìn)行檢測.甲、乙兩個(gè)車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過20克的為合格.

          (1)從甲、乙兩車間分別隨機(jī)抽取2個(gè)零件,求甲車間至少一個(gè)零件合格且乙車間至少一個(gè)零件合格的概率;

          (2)質(zhì)檢部門從甲車間8個(gè)零件中隨機(jī)抽取4件進(jìn)行檢測,若至少2件合格,檢測即可通過,若至少3 件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;

          (3)若從甲、乙兩車間12個(gè)零件中隨機(jī)抽取2個(gè)零件,用表示乙車間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊答案